Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы

Содержание

Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы

Содержание

  1. Есть ли будущее у автомобилей на водородном топливе
  2. Отличительные особенности водородного отопления
  3. Список автомобилей на водородном топливе
  4. Водородомобили
  5. Перспективы
  6. Модель с двумя фильтрами
  7. Какие перспективы у водородных машин и когда их можно будет увидеть на дорогах?
  8. Особенности гибридных конструкций
  9. Комплектация
  10. Двигатель на водородном топливе
  11. Как установить водородный котел?
  12. Принцип работы
  13. Водородные топливные элементы
  14. Водород как горючее
  15. Типы водородного двигателя
  16. Водородный генератор для автомобиля своими руками (чертежи)
  17. Газ Брауна
  18. Факторы, сдерживающие внедрение водородных технологий
  19. Что представляет собой водород?
  20. Темный водород
  21. Как сделать водородный двигатель своими руками
  22. Описание и принцип работы водородного генератора
  23. Термический реактор Росси
  24. Водородный двигатель: типы, устройство,принцип работы
  25. Основные характеристики водородных автомобилей
  26. Генератор водорода своими руками: инструкция
  27. Рекомендации по изготовлению

Есть ли будущее у автомобилей на водородном топливе

Отличительные особенности водородного отопления

Список автомобилей на водородном топливе

Существует ли автомобиль на водородном топливе? Да, причём их количество не такое уж и малое. Расскажу про самые популярные модели.

Honda Clarity

Автомобиль продавали в Японии и Калифорнии до 2014 года. Запас хода около 600 км, что больше, чем у любого электрокара. Заправляется Honda Clarity за считанные минуты.

Затем автоконцерн Honda выпустил конкурента Toyota Mirai, цена которого 72 тыс. долл. под названием Clarity Fuel Cell. На полной заправке можно было проехать до 700 км. Мотор имеет мощность 174 л.с. Автомобиль 5-местный.

Toyota Mirai

Это японский автомобиль, который создали после несколько десятков лет разработок. Автомобиль сначала выпустили для японского рынка, а затем и для американского.

Запас хода автомобиля на одной заправке 502 км, максимальная скорость – 178 км/ч., мощность – 153 л.с. В авто встроена система, которая видит препятствия и автоматически включает тормоз. В машине есть сенсорные экраны, при помощи которых осуществляется управление навигацией и микроклиматом.

Ford Airstream

Это гибридный автомобиль с электрическим мотором и водородными ячейками. Поэтому кроме водорода автомобиль может применять для движения аккумуляторы, которые подзаряжаются от водородных элементов.

На аккумуляторе Ford Airstream может проехать около 40 км (это половина заряда), а затем активируется водородное топливо. Запас хода чуть более 450 км, а максимальная скорость — 135 км/ч.

Mercedes-Benz GLC F-CELL

Это первый серийный автомобиль, который сочетает в себе аккумулятор и водородные топливные ячейки. На электричестве он может проехать 50 км, а на водороде – около 430 км. Отмечу, что аккумулятор можно зарядить от обычной электрической розетки.

Автомобиль можно использовать как в качестве электрокара на небольшие расстояния, так и в качестве водородного авто для длительных поездок.

Pininfarina H2 Speed

Это итальянский автомобиль, который способен разгоняться до 100 км/ч всего за 3,4 секунд. Максимально автомобиль может разгоняться до 299 км/ч. Запасы чистого водорода в баке – чуть более 6 кг. Кроме этого Pininfarina имеет мощный аккумулятор и электромоторы. Цена этого продвинутого автомобиля составляет 2,5 млн. долл.

BMW Hydrogen 7

Авто создано на базе стандартной BMW 7. Он работает как на бензине, так и на жидком водороде. В BMW Hydrogen 7 имеется бензиновый бак на 74 литра и большой водородный баллон весом целых 8 кг. Таким образом, максимальный запас хода в этой машине 780 км.

Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы

Автомобиль автоматически переключается между двумя типами топлива. Мощность двигателя на водороде – 228 л.с., а на бензине – больше на 32 л.с. Максимальная скорость 229 км/ч, разгон до 100 км/ч осуществляется чуть меньше, чем за 10 секунд.

Hyundai Nexo

Этот автомобильный концерн также стал одним из первых производить серийные водородные автомобили. Мощность двигателя Hyundai Nexo составляет 161 л.с., запас хода – 600 км. Разгоняется авто до 100 км/ч за 10 секунд. Цена автомобиля от 70 тыс. долл.

Grove Obsidian

Это водородный китайский автомобиль нового поколения, у которого запас хода составляет впечатляющие 1000 км. Он экономно расходует топливо за счёт облегчённого корпуса из углеродного материала и невысокому аэродинамическому сопротивлению. Заправка бака происходит всего за 3 минуты, а сам топливный бак очень прочен. А если бак будет повреждён, то водород из него вытечет в жидком виде и сгорит менее чем за 2 минуты.

Серийно автомобили станут выпускать с 2020 года, а к 2030 планируется создать 1 миллион экземпляров.

Другие авто

  • Audi A7 h-tron quattro;
  • Hyundai Tucson FCEV;
  • Mazda RX-8 Hydrogen RE;
  • Автобус Ford E-450;
  • Низкопольные автобусы MAN Lion City Bus.
  • Focus FCV;
  • Honda FCX;
  • Nissan X-TRAIL FCV;
  • Toyota Highlander FCHV;
  • Volkswagen — space up!;
  • Mercedes-Benz A-Class и Mercedes-Benz Citaro;
  • Irisbus;
  • Toyota FCHV-BUS;
  • единичные модели в Чехии, Китае и Бразилии.

Водородомобили

Перспективы

Модель с двумя фильтрами

Складывается данного типа электролизер для автомобиля своими руками довольно просто. В первую очередь необходимо заготовить четыре листа металла. В данном случае можно использовать оцинкованную сталь. При этом нержавейка для электролизеров также подойдет. После этого устанавливается непосредственно контейнер с водой. Отверстия в нем можно сделать при помощи ножа

Далее, чтобы сделать электролизер своими руками, важно закрепить фильтры. Использовать можно обычный сетчатый тип

В магазине приобрести его не составит труда. Следующим шагом фиксируется обратный клапан. Для этого контейнер необходимо закрепить на основе. Чтобы сделать это, многие специалисты советуют использовать болты. Далее останется поставить плату толщиной не более 2,3 мм. Следующим шагом фиксируется трубка барботажного типа

При этом важно следить за уровнем воды в контейнере. В последнюю очередь устанавливается форсунка

Затвор в данном случае должен располагаться со стороны платы. Клеммы крепятся только после наклейки прокладки.

Какие перспективы у водородных машин и когда их можно будет увидеть на дорогах?

На территории Европы и Соединенных Штатов водородный автомобиль уже можно встретить. Однако они еще находятся в категории диковинки. И на сегодняшний день перспектив пока немного.

Самая главная причина того, что данный тип транспорта еще нескоро заполонит дороги всех стран, заключается в отсутствии производственных мощностей. Во-первых, необходимо наладить выработку водорода. Причем нужно достичь такого уровня, чтобы помимо экологичности это еще было и доступное большинству автомобилистов топливо. Помимо производства этого газа нужно наладить его транспортировку (хотя для этого можно спокойно воспользоваться магистралями, по которым транспортируется метан), а также оснастить много заправочных станций соответствующими терминалами.

Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы

Во-вторых, каждому автопроизводителю придется серьезно модернизировать производственные линии, что требует немалых вложений. В условиях нестабильной экономики из-за разразившейся всемирной эпидемии мало кто пойдет на такие риски.

Если посмотреть на темпы развития электротранспорта, то процесс популяризации проходил очень быстро. Однако причина популярности машин на электротяге – возможность экономить на топливе. И это зачастую первая причина, почему их покупают, а не ради сохранения окружающей среды. В случае с водородом сэкономить не получится (по крайней мере сейчас), потому что для его производства тратится намного больше энергоресурсов.

Особенности гибридных конструкций

Комплектация

Двигатель на водородном топливе

Есть две перспективы. Первая (краткосрочная) — необходимо добиться большей эффективности использования нефтетоплива, долгосрочная — решением может стать переключение транспортных средств с бензиновых/дизельных двигателей на электрические топливные элементы (электрохимические генераторы), работающие на водороде, которые никогда не разряжаются. Бесшумные, не загрязняющие окружающую среду, это одни из самых экологически чистых источников энергии, когда-либо разработанных. Разберёмся, как они работают.

Есть два способа заставить современный автомобиль двигаться:

  1. Использовать двигатель внутреннего сгорания (ДВС). В процессе сжигания нефотетоплива вырабатывается тепло, благодаря чему транспортное средство может ехать.
  2. Электромобили работают совершенно по-другому. Там используются аккумуляторы, которые подают электроэнергию на электродвигатели, напрямую приводящие в движение колеса.

Есть гибридные автомобили, сочетающие оба варианта, водитель может переключатся между ними в соответствии с условиями вождения. Устройство водородного двигателя — нечто среднее между ДВС и аккумулятором. Он вырабатывает энергию, используя топливо из бака (газообразный водород под давлением, а не бензин или дизель). Процесса сжигания нет, H2 химически соединяется с кислородом из воздуха, образуя воду. Высвобождаемое электричество используется для питания электродвигателя. Никаких выхлопных газов.

Что происходит внутри

В основе принципа действия водородного двигателя лежит электрохимическая реакция. Состав топливного элемента — это три основные части:

  • положительно (желтая) и отрицательно (сиреневая) заряженные клеммы;
  • электролит (серый).

Электричество возникает следующим образом:

  1. Газообразный H2 из резервуара подаётся к положительному полюсу. Поскольку вещество взрывоопасно, бак должен быть чрезвычайно прочным.
  2. Кислород из воздуха (голубые капли) идёт по второй трубке.
  3. Положительная клемма металлическая (платина или палладий). Достигая катализатора, атомы H2 распадаются на ионы и электроны.
  4. Положительно заряженные протоны притягиваются к отрицательному полюсу, двигаясь к нему через электролит. Последний представляет собой тонкую полимерную мембрану.
  5. Электроны проходят через внешнюю цепь.
  6. Приходит в действие электродвигатель, заставляющий колёса автомобиля двигаться.
  7. На отрицательной клемме протоны и электроны рекомбинируют с кислородом путём химической реакции, которая производит воду.
  8. Выхлоп — водяной пар.

Процесс будет продолжаться до тех пор, пока есть запасы H2 и O2. Поскольку воздух всегда доступен, единственный ограничивающий фактор — количество водорода H2 в баке.

Как установить водородный котел?

Принцип работы

Устройство водородных двигателей не отличается особой сложностью. Главным отличием является способ подачи и воспламенения смесей при полном сохранении основного принципа преобразования. При этом на фоне традиционного бензина и дизеля, водородное топливо обеспечивает мгновенную скорость реакции даже в условиях незначительного уровня давления внутри топливной системы. Для образования смеси участие воздуха не является необходимым, а остающийся в камере сгорания пар, после прохождения сквозь радиатор и конденсации, снова становится Н2О.

Читать статью  Система питания двигателей ВАЗ-21114 и ВАЗ-21124

Безусловно, топливный элемент в данном варианте предполагает использование специального электролизера, обеспечивающего выделение достаточного количества водорода для участия в возобновлённом гидролизе с кислородом. Основная проблема состоит в том, что в современных реалиях данный вариант практически невыполним. Современные технологии не гарантируют стабильность функционирования и беспроблемный запуск мотора при отсутствии атмосферного воздуха.

Водородные топливные элементы

Водородный топливный элемент, с конструктивной точки зрения, является своеобразной аккумуляторной «батарейкой» с высокими показателями коэффициента полезного действия (порядка 50%). Внутри корпуса протекают физико-химических процессы с участием специальной мембраны, отвечающей за проведение протонов. Посредством такого мембранного элемента происходит деление корпуса на пару частей – резервуар с анодом и камеру с катодом.

Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы

Камера с анодом заполняется водородом, а в катодную часть поступает атмосферный кислород. В качестве покрытия электродов используются дорогостоящие редкоземельные металлы, включая платину. Особенности поверхности обеспечивают взаимодействие с водородными молекулами, в результате чего происходит потеря электронов. Одномоментно с этим процессом выполняется прохождение протонов сквозь мембрану к катоду. Благодаря такому воздействию катализатора протоны соединяются с поступившими извне электронами.

Результат произошедшей реакции – образование воды и поступление электронов из анодной камеры в электрическую цепь, подключённую к силовому агрегату. Таким образом, двигатель приводится в движение водородным топливным элементом и может проработать порядка 200-250 км. Тормозит применение такой технологии и серийный выпуск автомобилей с водородными двигателями необходимость использовать в конструкции элементов платину, палладий и другие дорогостоящие металлы.

Водород как горючее

Типы водородного двигателя

Водородный генератор для автомобиля своими руками (чертежи)

Газ Брауна

Сегодня водородные генераторы у автолюбителей приобретают популярность. Однако это не совсем то, о чем шла речь выше. Путём электролиза вода превращается в так называемый газ Брауна, который и добавляют к топливной смеси. Основная задача, которую решает этот газ, – полное сгорание топлива. Это и служит увеличением мощности и снижением расхода топлива на приличный процент. Некоторым механикам удалось добиться экономии на 40 %.

Решающее значение в количественном выходе газа имеет площадь поверхности электродов. Под действием электрического тока молекула воды начинает разлагаться на два атома водорода и один кислорода. Такая газовая смесь при сгорании выделяет почти в 4 раза больше энергии, чем при сгорании молекулярного водорода. Поэтому использование этого газа в двигателях внутреннего сгорания приводит к более эффективному сгоранию топливной смеси, уменьшает количество вредных выбросов в атмосферу, увеличивает мощность и уменьшает величину затраченного топлива.

Факторы, сдерживающие внедрение водородных технологий

  • отсутствие водородной инфраструктуры (частично эту проблему можно разрешить в частности устройством домашних заправок при частных жилых домах).
  • несовершенные технологии хранения водорода (см. статью Хранение водорода);
  • отсутствие стандартов безопасности, хранения, транспортировки, применения и т. д.;
  • распространённые современные способы безопасного хранения водорода требуют большего объёма топливных баков, чем для бензина. Поэтому в разработанных на сегодняшний день автомобилях замена топлива на водород приводит к значительному уменьшению объёма багажника. Возможно в будущем эта проблема будет преодолена, но скорее всего за счёт некоторого увеличения габаритов легковых авто. (Для других классов автомобилей (автобусов, грузовых автомобилей, разнообразных специальных автомашин) проблема увеличения габаритов транспортного средства не столь остра. В частности на автобусах топливные элементы могут размещаться на крыше кузова, подобно тому как это делается например с троллейбусным электрооборудованием.)

Что представляет собой водород?

Темный водород

В 2016 году учёные из США и Великобритании, создав при мгновенном сжатии давление 1,5 млн. атмосфер и температуру в несколько тысяч градусов, смогли получить третье промежуточное состояние водорода, при котором он одновременно имеет свойства и газа, и металла. Он получил название «тёмный водород», так как в этом состоянии он не пропускает видимый свет, в отличие от инфракрасного излучения. “Тёмный водород”, в отличие от металлического, идеально вписывается в модель строения планет-гигантов. Он объясняет, почему их верхние слои атмосферы значительно теплее, чем должны быть, перенося энергию от ядра, а поскольку он обладает значительной электропроводностью, то играет ту же роль, что и внешнее ядро на Земле, формируя магнитное поле планеты!

Как сделать водородный двигатель своими руками

Создание генератора водорода — эффективный способом существенного сокращения топливных расходов. Задача — подать в камеру сгорания специальный газ (система Брауна). Ниже приведена простая пошаговая инструкция.

1. Сборка электролита

Используйте 8 электролитических пластин из нержавеющей стали (16×20 см), уложив их друг на друга. У них уже должно быть отверстие сверху. Просверлите еще по одному отверстию толщиной 1 см. Между ними поместите ПВХ проставки (толщиной 3 мм). Стальные пластины не должны касаться друг друга. С помощью винтового соединения скрепите конструкцию.

2. Подготовка пластикового контейнера

Подготовьте ёмкость. Вставьте два длинных винта внутрь крышки, зазоры закройте герметиком. Прикрепите провод к каждому винту, обмотав его вокруг, оставьте снаружи контейнера. Сделайте еще одно отверстие в крышке и вставьте туда резиновый шланг, погрузив его в воду. Другой конец трубки должен открываться в пластиковый корпус воздухозаборника автомобиля.

Нужно будет просверлить отверстие в корпусе, чтобы вставить трубку. Для более прочного соединения используйте фитинги из ПВХ на обоих концах. Налейте дистиллированную воду, заполнив половину объёма. Положите пол чайной ложки соли или полную пищевой соды, хорошо перемешайте.

Поместите электролит из нержавеющей стали в контейнер, убедившись, что он хорошо погружен. Любые промежутки внутри ёмкости должны быть заполнены герметиком, чтобы предотвратить утечку газа. Внутри тары мгновенно образуются пузырьки, газ начал вырабатываться.

3. Подключение к источнику питания

Соедините выводы винтов контейнера с положительными и отрицательными клеммами источника постоянного тока с помощью зажимов. Если провода не обеспечивают убедительного соединения, используйте вместо этого барашковые гайки.

Можно подключить его напрямую к аккумулятору, отрицательный контакт подключается к аналогичному выводу батареи, а положительный — к реле зажигания блока предохранителей. Это необходимо для того, чтобы генератор включался только тогда, когда автомобиль тоже включен.

Сделать полноценный водородный двигатель для автомобиля своими руками не получится, поскольку технология довольно сложная.

Описание и принцип работы водородного генератора

Термический реактор Росси

Водородный двигатель: типы, устройство,принцип работы

ТИПЫ ВОДОРОДНЫХ ДВИГАТЕЛЕЙ

Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.

Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы

Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Главное отличие двигателей на водороде от привычных нам сейчас бензиновых либо дизельных аналогов заключается в способе подачи и воспламенении рабочей смеси. Принцип преобразования возвратно-поступательных движений КШМ в полезную работу остается неизменным. Ввиду того что горение топлива на основе нефтепродуктов происходит медленно, камера сгорания наполняется топливно-воздушной смесью немного раньше момента поднятия поршня в свое крайнее верхнее положение (ВМТ). Молниеносная скорость реакции водорода позволяет сдвинуть время впрыска к моменту, когда поршень начинает свое возвратное движение к НМТ. При этом давление в топливной системе не обязано быть высоким (4 атм. достаточно).

В идеальных условиях водородный двигатель может иметь систему питания закрытого типа. Процесс смесеобразования происходит без участия атмосферного воздуха. После такта сжатия в камере сгорания остается вода в виде пара, который проходя через радиатор, конденсируется и превращается обратно в Н2О. Такой тип аппаратуры возможен в том случаи, если на автомобиле установлен электролизер, который отделит с полученной воды водород для повторной реакции с кислородом.

На практике такой тип системы осуществить пока что сложно. Для исправной работы и уменьшения силы трения в моторах используется масло, испарения которого являются частью отработанных газов. На современном этапе развития технологий устойчивая работа и беспроблемный запуск двигателя, работающего на гремучем газе, без использования атмосферного воздуха неосуществимы.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной). Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода. В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Такая реакция образует воду, при этом электроны из камеры с анодом поступают в электрическую цепь. Указанная цепь подключена к двигателю. Простыми словами, образуется электричество, которое заставляет двигатель работать от такого водородного топливного элемента.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде.

Основные характеристики водородных автомобилей

Генератор водорода своими руками: инструкция

Рекомендации по изготовлению

Зная технологию получения водородного топлива и обладая определенными навыками, в домашних условиях можно сделать водородный генератор своими руками. Сегодня существует несколько работоспособных схем, позволяющих создать такую установку. Причем в отличие от классического устройства, в самодельном электроды помещаются не в емкость с водой, а сама жидкость поступает в зазоры между пластинами. Перед началом проведения работ по изготовлению водородной установки своими руками следует внимательно изучить чертежи.

Выбор материалов

Чаще всего домашние мастера сталкиваются с проблемой выбора электродов. С созданием топливной ячейки ситуация более простая и сегодня существует два основных типа генераторов водорода — «мокрый» и «сухой». Для создания первого можно использовать любой контейнер, имеющий достаточный запас прочности и газонепроницаемости. Оптимальным выбором можно считать корпус от аккумулятора старого образца для легковой машины.

Лучшими электродами будут пластины (трубки) из нержавейки. В принципе можно использовать и черный металл, но он быстро подвергается коррозии и такие электроды требуют частой замены. Совершенно иначе дело обстоит при использовании высокоуглеродистых сплавов, легированных хромом. Примером такого материала является нержавейка марки 316L.

Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы Водородные двигатели: принцип работы машин на водородном топливе, плюсы и минусы

При использовании трубок, они должны подбираться так, чтобы при установке одного элемента в другой между ними был обеспечен зазор величиной не более одного миллиметра

Читать статью  Ремонт топливной системы Toyota (Тойота) | Автосервисы Шмид - быстрое, комфортное техобслуживание, СТО, магазины автозапчастей

Не менее важной деталью генератора водорода для автомобиля является ШИМ-генератор. Именно благодаря правильно собранной электросхеме можно регулировать частоту тока, а без этого добывать водород не представляется возможным

Для создания водного затвора (бабблера) можно использовать любую емкость, обладающую достаточным показателем герметичности. При этом ее желательно оснастить крышкой, которая плотно закрывается, но при возгорании ННО внутри сразу будет сорвана. Для предотвращения возврата газа Брауна в топливную ячейку, рекомендуется установить отсекатель между водным затвором и электролизером.

Сборка устройства

Для создания кислородного генератора лучше выбрать «сухую» топливную ячейку, а электроды стоит изготовить из нержавейки. Именно она пользуется наибольшей популярностью среди домашних мастеров

Также важно придерживаться определенной последовательности действий:

По размеру генератора необходимо нарезать пластины из органического стекла или органита, которые будут использоваться в качестве боковых стенок. Оптимальными размерами для топливной ячейки являются 150х150 или 250х250 мм.
В корпусных деталях необходимо просверлить отверстия для установки штуцеров для жидкости, одно для ННО и 4 крепежных.
Из стали марки 316L изготавливаются электроды, размер которых должен быть на 10−20 мм меньше в сравнении с боковыми стенками. В одном из углов каждого электрода необходимо сделать контактную площадку для соединения их в группы, а также подключения к источнику питания.
Чтобы увеличить количество получаемого в электрогенераторе газа Брауна, электроды следует обработать наждачной бумагой с каждой стороны.
В пластинах сверлятся отверстия диаметром 6 мм (подача воды) и 8−10 мм (отвод газа). При расчете мест сверления необходимо учитывать месторасположение патрубков.
Сначала в пластины из оргстекла монтируются штуцера и хорошо герметизируются.
В одну из корпусных деталей устанавливаются шпильки, а затем укладываются электроды.
Электродные пластины отделяются от боковых стенок прокладками из паронита либо силикона. Аналогичным образом необходимо изолировать и сами электроды.
После установки последнего электрода монтируются уплотнительные кольца и генератор закрывается второй стенкой. Сама конструкция скрепляется с помощью гаек с шайбами

В этот момент крайне важно следить за равномерностью затяжки крепежных элементов и не допустить перекосов.
Топливная ячейка подключается к емкости с жидкостью и водному затвору.
После соединения групп электродов в соответствии с их полюсом, генератор подключается к ШИМ-генератору.

Водородное топливо

Водород один из наиболее перспективных источников энергии. Его запасы на нашей планете практически безграничны. Кроме того, он содержит в единице веса почти в 3 раза больше тепловой энергии, чем, например, бензин.

водород

1. Методы получения водорода и перспективы его использования в автомобилях

В настоящее время существует много различных методов получения водорода:

  • электрохимический метод (электролиз воды, каталитическая конверсия природного газа и др.);
  • получение водорода в термохимических циклах (термохимическое разложение воды на водород и кислород, термохимическое разложение йодата калия);
  • комбинированные методы;
  • фотокаталитические методы;
  • получение водорода из сероводорода;
  • получение водорода из углеводородного сырья (метод паровой конверсии, метод каталитической конверсии легкого углеводородного сырья и газификации тяжелых нефтяных остатков, плазменный риформинг);
  • одноступенчатые методы разложения воды на водород и кислород.

Для промышленного получения водорода основными видами сырья являются природные горючие газы, коксовый газ и газы нефтепереработки, а также продукты газификации твердых и жидких топлив (главным образом угля). Важнейшими способами производства водорода из природного газа являются каталитическое взаимодействие углеводородов, главным образом метана, с водяным паром (конверсия):

и неполное окисление углеводородов кислородом:

Образующаяся окись углерода также подвергается конверсии:

Водород, добываемый из природного газа, самый дешевый. Очень распространен способ производства водорода из водяного и паровоздушного газов, получаемых газификацией угля.

Получение водорода электролизом воды в настоящее время — процесс чрезвычайно дорогой. Однако в этом направлении ведутся постоянные исследования. Например, процесс разложения воды, используемый при производстве водорода, может быть ускорен за счет уникальных каталитических свойств углеродных нанотрубок. Кроме того, следует учитывать способ получения электроэнергии, необходимой для электролиза воды. Если электроэнергия вырабатывается на электростанциях, использующих в качестве топлива природный газ или уголь, то экологичность применения водорода в качестве моторного топлива во многом теряет свои преимущества. Логичнее в качестве источника энергии для получения водорода использовать возобновляемый источник. Таким источником может быть энергия ветра, солнца и т.п.

Мощности по производству водорода в мире оцениваются в 40 млн т в год. Практически весь вырабатываемый в настоящее время водород используется в различных процессах нефтепереработки и нефтехимии.

Водород (лат. hydrogenium), Н — химический элемент, первый по порядковому номеру в периодической системе Менделеева; атомная масса его составляет 1,00797. При обычных условиях водород — газ; не имеет цвета, запаха и вкуса. Водород — легчайшее из всех известных веществ (в 14,4 раза легче воздуха), плотность его составляет 0,0899 г/л при 0 °С и 1 атм. Водород кипит (сжижается) и плавится (затвердевает) соответственно при –252,6 °С и –259,1 °С (только гелий имеет более низкие температуры плавления и кипения). Удельная теплоемкость водорода при 0 °С и 1 атм равна 14,208 кДж/(кг · К). Водород малорастворим в воде (0,0182 мл/г при 20 °С и 1 атм), но хорошо — во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объемов Н на 1 объем Pd). Жидкий водород очень легок, его плотность при –253 °С равна 0,0708 г/см3.

Один из путей постепенного внедрения водорода на автотранспорте — применение двухтопливного двигателя внутреннего сгорания (водород — бензин, водород — метан).

Перспективность применения водорода для автомобильных двигателей определяется прежде всего экологической чистотой, неограниченностью и возобновляемостью сырьевых запасов, относительно низкими затратами на транспортировку и, наконец, уникальными моторными свойствами, что открывает возможности его широкого применения как в современных автомобильных двигателях без их коренной перестройки, так и в принципиально новых транспортных энергоустановках с прямым преобразованием энергии типа электрохимических генераторов тока.

Использование водорода в качестве топлива для автомобильных двигателей связано с довольно обширным кругом вопросов:

  • разработка наиболее эффективных способов преобразования химической энергии водорода в энергию движения автомобиля;
  • разработка безопасных и эффективных способов хранения водорода на борту автомобиля;
  • решение ряда самостоятельных вопросов, прямо не связанных с автомобилями, но без учета которых идея перехода на водород неосуществима. Это проблемы получения водорода в необходимых количествах, его транспортировки и хранения, создания инфраструктуры, обеспечивающей эксплуатацию автомобильного транспорта на водороде.

Использование водорода в качестве моторного топлива для автомобилей может осуществляться путем применения:

  • самого водорода;
  • водорода совместно с традиционными нефтяными топливами;
  • водорода как топлива в топливных элементах.

2. Применение водорода в топливных элементах

Большое значение для практического применения имеет преобразование химической энергии органического топлива в электрическую — создание топливных элементов. Распространены низкотемпературные (150 °С) топливные элементы с жидким электролитом (концентрированные растворы серной или фосфорной кислот и щелочей KОН). Топливом в элементах служит водород, окислителем — кислород из воздуха.

Образование электроэнергии в элементе — это процесс обмена электронами между горючим и окислителем с образованием нового соединения — продукта реакции (рис. 3).

Отличие реакции в элементе от реакции окисления при горении состоит в том, что в первом случае процессы протекают с точки зрения термодинамики обратимо, т.е. разность энергий электронов у исходных веществ и продуктов реакции непосредственно превращается в электроэнергию (упорядоченное движение электронов). При горении же химическая энергия переходит в энергию хаотического теплового движения атомов, молекул и их частей.

Схема водородно-кислородного элемента

Рис. 3. Схема водородно-кислородного элемента: 1 – катод; 2 — электролит; 3 — анод

Основные преимущества топливных элементов:

  • высокая эффективность прямого преобразования химической энергии топлива (водорода) и окислителя (кислорода) в электроэнергию (КПД составляет 50…70 %);
  • высокие удельные массовые характеристики: 1,2…5 кг/кВт, в перспективе 0,8…1 кг/кВт;
  • компактность (большая плотность тока): 2…5 л/кВт, в перспективе 0,6…1 л/кВт;
  • низкая рабочая температура (до 100 °С), что обеспечивает возможность быстрого запуска и быстрого достижения максимальной мощности энергоустановки;
  • возможность многократных перегрузок по току;
  • высокий уровень отработки (для щелочных топливных элементов).

Топливный элемент — составная часть электрохимического генератора, который, кроме того, содержит системы кондиционирования, подготовки топлива, утилизации отходов и др. (рис. 4). Первичным топливом могут быть метан, пары метанола, керосина, синтез-газ и т.д. Коэффициенты полезного действия у генераторов с топливными элементами изменяются от 30 % (двигатели внутреннего сгорания и газовые турбины) до 60…65 % (энергоустановки с твердооксидными топливными элементами).

Эксперты связывают «водородное будущее» автотранспорта прежде всего с топливными элементами. Водород и кислород соединяются в «ящике с мембраной» (так упрощенно можно представить топливный элемент) и получают водяной пар плюс электричество. В отличие от аккумуляторной батареи в топливном элементе обеспечивается непрерывный подвод реагирующих компонентов (горючего и окислителя) в зону электрохимической реакции, что позволяет преодолеть основной недостаток классического электромобиля (при сохранении всех достоинств) — недостаточную энергоемкость источника энергии. Удельная энергоемкость топливного элемента в 10 раз превышает этот параметр для лучших аккумуляторных батарей (порядка 1000 Вт · ч/кг вместо 100 Вт · ч/кг). При этом наблюдается полное отсутствие вредных выбросов, пробег определяется только запасом топлива на борту.

Схема электрохимического генератора

Рис. 4. Схема электрохимического генератора

Все это делает топливный элемент, работающий на водороде и воздухе, наиболее привлекательным источником энергии, особенно для городского транспорта. Однако серийный выпуск и массовые продажи машин на топливных элементах сдерживаются малым числом соответствующих заправочных станций. Да и стоимость топливных элементов пока велика.

3. Применение водорода в двигателях внутреннего сгорания

Для повышения экологической чистоты бензиновых двигателей внутреннего сгорания и их экономичности до уровня дизельных двигателей было предложено использовать водород в качестве основного моторного топлива или как добавки к бензину.

Интерес ученых в области двигателестроения всегда привлекали своеобразные физико-химические свойства водорода, главным достоинством которых является экологическая чистота рабочего процесса. Известный научно-технический опыт использования водорода в качестве топлива для двигателей внутреннего сгорания показывает, что водород совместим с существующей базовой конструкцией поршневого двигателя. При этом водород кардинально улучшает экологическую эксплуатационную характеристику и имеет широкую сырьевую базу. Организация рабочего процесса двигателя, работающего на водороде или с его добавкой к другим топливам, имеет особенности и требует разработки новых способов топливоподачи.

Использование водорода в качестве топлива для двигателей внутреннего сгорания представляет собой комплексную задачу, включающую широкий круг вопросов:

  • возможность перевода на водород современных двигателей;
  • изучение рабочего процесса двигателей при работе на водороде;
  • определение оптимальных способов регулирования рабочего процесса, обеспечивающих минимальную токсичность и максимальную топливную экономичность;
  • разработка системы топливоподачи, обеспечивающей организацию эффективного рабочего процесса в цилиндрах двигателя;
  • разработка эффективных способов хранения водорода на борту транспорта;
  • обеспечение экологической эффективности применения водорода;
  • возможность заправки водородом и аккумулирования водорода.

При сгорании водорода в двигателе образуется практически только вода, и в этом отношении двигатель на водородном топливе является наиболее экологически чистым. Также водород имеет высокие энергетические свойства — низшая теплота сгорания водорода составляет 120 МДж/кг (бензин — 41…44 МДж/кг, дизельное топливо — 42…43 МДж/кг).

При высокой массовой энергоплотности объемная энергоплотность водорода на 15…20 % ниже энергоплотности бензина. В смеси с воздухом водород устойчиво воспламеняется в широком диапазоне концентраций, вплоть до коэффициента избытка воздуха α = 10, что обеспечивает нормальную работу двигателя на всех скоростных режимах в широком диапазоне изменения состава смеси от α = 0,2 до α = 5. Критическая степень сжатия при стехиометрическом водородно-воздушном составе смеси не превышает 4,7, что соответствует октановому числу 46 по исследовательскому методу,

Читать статью  Как проверить топливный насос в автомобиле своими руками: давление бензонасоса, признаки неисправности, почему не качает

в то время как при α = 3,5 степень сжатия достигает 9,4 и октановое число равно 114. Таким образом, при достаточном обеднении смеси возможна бездетонационная работа водородного двигателя в широком диапазоне степеней сжатия.

Исследования в области применения водорода для двигателей внутреннего сгорания отличаются широким спектром вариантов использования водорода для двигателей внешнего и внутреннего смесеобразования: использование водорода в качестве присадки, частичное замещение топлива водородом и работа двигателя только на водороде.

Используют водород в двигателях, работающих на традиционном топливе нефтяного происхождения, а также в сочетании с альтернативным топливом, например со спиртами (этиловый, метиловый) или природным газом. Возможно использование водорода в сочетании с синтетическим топливом, мазутами и др.

Качественное влияние на рабочий процесс двигателя внутреннего сгорания определяется прежде всего свойствами водорода. Он обладает более высокой диффузионной способностью, большей скоростью сгорания, широкими пределами воспламенения. Энергия воспламенения водорода на порядок меньше, чем у углеводородных топлив. Реальный рабочий цикл определяет более высокую степень совершенства рабочего процесса двигателя внутреннего сгорания, лучшие показатели экономичности и токсичности.

Кроме того, перевод на водород обычных двигателей внутреннего сгорания не только делает их чистыми, но и повышает термический КПД и улучшает гибкость работы. Это происходит потому, что водород обладает намного более широким по сравнению с бензином диапазоном пропорций смешивания его с воздухом, при которых еще возможен поджог смеси, и сгорает водород полнее, даже вблизи стенок цилиндра, где в бензиновых двигателях обычно остается несгоревшая рабочая смесь.

Значительный эффект по повышению КПД традиционных автомобильных двигателей, особенно в области малых нагрузок, дает переход на топливные смеси с большим избытком воздуха. При этом уникальные моторные свойства водорода позволяют даже при относительно небольших его добавках к бензино-воздушной смеси реализовать такие степени обеднения смеси, которые недоступны любому другому способу.

Чтобы приспособить существующие конструкции двигателей к работе на водороде как основном топливе, необходимы определенные изменения, в первую очередь конструкции топливоподающей системы. Известно, что применение внешнего смесеобразования приводит к уменьшению наполнения двигателя свежим окислителем, а значит, и к снижению мощности до 40 % из-за низкой плотности и высокой летучести водорода. При использовании внутреннего смесеобразования энергоемкость заряда водородного дизеля может возрастать до 12 % или может быть обеспечена на уровне, соответствующем работе дизеля на традиционном углеводородном дизельном топливе. Особенности организации рабочего процесса водородного двигателя определяются свойствами водородно-воздушной смеси, а именно: пределами воспламенения, температурой и энергией воспламенения, скоростью распространения фронта пламени, расстоянием гашения пламени. Но в водородных двигателях внутреннего сгорания скорость распространения фронта пламени при сгорании водорода в 5–6 раз выше, чем при сгорании бензина. Это приводит к большим механическим и тепловым нагрузкам на детали кривошипно-шатунного механизма двигателя. Для современных конструкций двигателей наиболее эффективно использование водорода в качестве добавки к бензиновоздушной смеси. При этом не требуется серьезных изменений в конструкции топливной системы и системы двигателя в целом. С другой стороны, добавка водорода в широких пределах активизирует рабочий процесс в двигателе.

Практически во всех известных исследованиях рабочего процесса водородного двигателя отмечается трудноконтролируемое воспламенение водородно-воздушной смеси. Воздействие на преждевременное воспламенение путем подачи воды во впускной трубопровод или путем впрыска холодного водорода исследовано и дает положительные результаты.

Остаточные газы и горячие точки камеры сгорания интенсифицируют преждевременное воспламенение водородно-воздушной смеси. Это обстоятельство требует дополнительных мероприятий по предупреждению неконтролируемого воспламенения. В то же время низкая энергия воспламенения в широких пределах коэффициента избытка воздуха позволяет использовать существующие системы зажигания при переводе двигателей на водород.

Самовоспламенение водородно-воздушной смеси в цилиндре двигателя при степени сжатия, соответствующей дизелям, не происходит. Для самовоспламенения этой смеси необходимо обеспечить температуру конца сжатия не менее 1023 К. Возможно воспламенение воздушной смеси от запальной порции углеводородного топлива за счет увеличения температуры конца сжатия наддувом или подогревом на впуске воздушного заряда.

Водород в качестве топлива для дизелей характеризуется большой скоростью распространения фронта пламени. Эта скорость может превышать 200 м/с и вызывать возникновение волны давления, перемещающейся в камере сгорания со скоростью свыше 600 м/с. Высокая скорость сгорания водородно-воздушных смесей, с одной стороны, должна оказывать положительное влияние на повышение эффективности рабочего процесса, с другой стороны, этим предопределяются высокие значения максимального давления и температуры цикла, более высокая жесткость рабочего процесса водородного двигателя. Повышение максимального давления цикла влечет снижение моторесурса двигателя, а увеличение максимальной температуры приводит к интенсивному образованию окислов азота. Возможно снижение максимального давления за счет дефорсирования двигателя или сжигания водорода по мере его подачи в цилиндр на такте рабочего хода. Снижение эмиссии окислов азота до незначительного уровня возможно путем обеднения рабочей смеси или путем использования воды, подаваемой во впускной трубопровод. Так, при α  1,8 эмиссия окислов азота практически отсутствует. При подаче воды по массе в 8 раз больше, чем водорода, эмиссия окислов азота снижается в 8–10 раз.

В дизелях, работающих всегда при избытке воздуха в смеси, содержание в продуктах сгорания окиси углерода и углеводородов немного ниже по сравнению с бензиновыми двигателями, а уровень содержания окислов азота сравнительно близок. Дизели выбрасывают большое количество сажи, являющейся адсорбентом для полициклических ароматических углеводородов, часть которых обладает канцерогенными свойствами. Именно количество сажи является определяющим в общем уровне токсичности отработавших газов дизелей.

Благодаря снижению содержания углеводородного топлива при работе на водороде состав отработавших газов существенно отличается от традиционного. Однако даже при работе на чистом водороде из-за выгорания углеводородных смазок, попадающих в камеру сгорания, наблюдается незначительное количество углеводородных соединений. При использовании углеводородных топлив для воспламенения рабочей смеси количество углеводородных соединений зависит от количества запального углеводородного топлива.

При внутреннем смесеобразовании водородного двигателя продолжительность впрыска водорода оказывает влияние на содержание водорода в продуктах сгорания. Образование водородновоздушной смеси для дизелей влияет на показатели водородного двигателя внутреннего смесеобразования. Формирование рабочей смеси водородного дизеля должно обеспечивать гомогенность водородно-воздушного горючего тела. Этого можно достичь за счет оптимизации формы камеры сгорания и динамики развития струи водорода, подаваемого в цилиндр, с учетом движения свежего заряда воздуха в цилиндре.

Экспериментальные исследования по использованию водорода в качестве топлива для поршневого двигателя внутреннего сгорания показывают, что существует проблема детонационного сгорания. При этом авторы определяют различные пределы детонационной стойкости водородно-воздушной смеси в связи с разной ее оценкой. Так, оценка по стуку в двигателе дает результаты, почти в 2 раза отличающиеся от оценки по амплитуде высокочастотных колебаний на линии сгорания индикаторной диаграммы. Отдельные исследования свидетельствуют, что исчезновение стука наблюдается при степени сжатия 8, однако при этом колебания на линии сгорания имеются. Это значит, что оказывает влияние тепловое состояние двигателя, температура цикла в совокупности с качеством смесеобразования. Возможно использование антидетонационных свойств воды для исключения детонации водородного двигателя.

При использовании водорода для двигателей внешнего смесеобразования индикаторные и эффективные показатели ухудшаются. Чем больше процент добавки водорода, тем ниже индикаторный КПД и выше температура выпускных газов. Добавка водорода выше 30 % от суммарного подведенного тепла при α = 1,35 вызывает детонационноподобное сгорание, сопровождающееся появлением стуков и резким падением мощности двигателя. Кроме того, увеличивается объем водорода в выпускных газах и повышается количество окислов азота, содержание окиси углерода и углеводородов снижается.

Подача 5 % по массе пароводородной смеси на впуск дизеля позволяет улучшить параметры рабочего процесса и снизить дымность отработавших газов на 30 %, а содержание окислов азота в 2,4 раза. Большие добавки пароводородной смеси приводят к росту максимального давления цикла и скорости нарастания давления, т.е. снижается надежность дизеля.

В то же время согласно исследованиям ряда специалистов добавка 5 % водорода уменьшает требования к октановому числу на 10 %. Опытная эксплуатация автомобиля на бензино-водородной смеси показала, что индикаторный КПД двигателя с оптимальными добавками водорода увеличивается на 25 %, эксплуатационный расход топлива уменьшается на 25…40 %. При работе двигателя на холостом ходу практически исключается выброс токсичных веществ с отработавшими газами.

Итак, рабочий процесс водородного двигателя включает: жесткость сгорания, детонацию, неконтролируемое воспламенение, эмиссию окислов азота, формирование водородно-воздушной смеси. Одновременно известные исследования предлагают мероприятия, обеспечивающие нормальную работу двигателя на водороде в зависимости от поставленной технической цели, ее граничных условий.

Так, если целью является использование водорода в качестве основного топлива без потери мощности базового двигателя, то наиболее целесообразно внутреннее смесеобразование при воспламенении горючей смеси от запальной порции углеводородного топлива. В этом случае улучшаются экологические и экономические показатели дизеля. Индикаторный расход топлива снижается на 0,25 МДж/(кВт · ч) при 50%-ном замещении дизельного топлива водородом. Коэффициент избытка воздуха возрастает с 1,5 до 1,7, т.е. на частичных нагрузках смесь обедняется на 12 %, а на номинальном режиме — на 15 %. Это позволяет сохранить уровень окислов азота в отработавших газах и в 2 и более раза снизить содержание сажи на выпуске.

В зависимости от нагрузки для обеспечения нормальной работы двигателя без стука целесообразно на впуск подавать воду в соотношении 1:1 к подаваемому водороду, особенно на режиме полной нагрузки и близких к нему.

Предусматривается формирование водородно-воздушной смеси на такте сжатия в период после закрытия клапанов до подачи дизельного топлива. Газообразный водород, подаваемый в цилиндр клапаном-форсункой, поступает через отверстие, расположенное под углом 20…25° к тангенциальному направлению вращения заряда, усиливает вихревое движение заряда и способствует гомогенизации водородно-воздушной смеси. Если вершина струи водорода достигает противоположной стенки камеры сгорания, а энергия вихревого движения заряда достаточна, чтобы распределить водород по окружности, то можно считать, что водородновоздушная смесь гомофазная. Часть водорода направляется в зону струи углеводородного топлива, обеспечивая эффект торможения процесса сажеобразования.

Процесс конвертации дизеля на водород можно условно разделить на два основных, последовательно выполняемых этапа. Первый этап включает аккумулирование водорода в баллонах; приоритетное использование внутреннего смесеобразования и создание топливоподающей аппаратуры с подачей водорода на такте сжатия при давлении порядка 10 МПа; воспламенение горючей смеси от запальной порции углеводородного топлива; исследование процессов смесеобразования и управление ими; изучение термодинамических особенностей криогенного водорода как моторного топлива.

Второй этап включает создание криогенной системы хранения водорода; разработку адекватной системы управления всеми процессами, связанными с использованием водорода на транспорте; организацию рабочего процесса при работе на чистом водороде с принудительным воспламенением от свечи; исследование возможности подачи водорода в цилиндр вариантными способами.

Отсутствие углерода в водородном топливе приводит к тому, что в отработавших газах практически отсутствуют оксиды углерода (СО и СО2) и несгоревшие углеводороды (СnНm). Незначительные количества этих продуктов в отработавших газах обусловлены выгоранием смазочных материалов, попадающих в камеру сгорания. Выброс оксидов азота при стехиометрическом составе смеси за счет более высокой температуры горения водородно-воздушной смеси вдвое превышает выброс оксидов азота бензинового двигателя. Обеднение смеси приводит к быстрому снижению оксидов азота, а при α = 1,8 они в отработавших газах практически отсутствуют. Оксиды азота также легко обезвреживаются в каталитических нейтрализаторах. По этой причине водородное топливо для многих представляется идеальным инструментом для полного решения проблемы загрязнения окружающей среды.

Развитие водородной энергетики сдерживается экономическими соображениями. Стоимость киловатта установленной мощности (более 3…4 тыс. дол.) на порядок больше, чем в традиционной энергетике. Кроме того, цена водорода на порядок выше, чем обычного топлива. Тем не менее цена обычного топлива будет расти, а энергии, произведенной водородными устройствами, — падать. Поэтому водородная энергетика вполне перспективна.

https://yandex.ru/turbo/automobile-zip.ru/s/needtoknow/vodorodnyj-dvigatel-dla-avtomobila-ustrojstvo-princip-raboty-kak-sdelat-svoimi-rukami.html?sign=f35da56954031e115bc38ab4aeb2e5644782c7b863f901a29cc6d8cb5e6980b6:1617910071&parent-reqid=1617910071882628-202403769171862310800103-production-app-host-vla-web-yp-33&lite=1
https://extxe.com/11839/vodorodnoe-toplivo/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: