Техническое обслуживание (ТО) ходовой части автомобиля

Содержание

Техническое обслуживание (ТО) ходовой части автомобиля

Техническое обслуживание ходовой части

При ЕО проверяют состояние рамы, рессор, колес.

При ТО-1 проверяют люфт подшипников ступиц передних колес; контролируют состояние амортизаторов, крепления стремянок, пальцев рессор, колес; проверяют состояние шин и давление воздуха в них; смазывают шарниры ходовой части автомобиля.

При ТО-2 проверяют состояние балки переднего моста; не перекошены ли передний и задний мосты; крепление хомутиков рессор и амортизаторов; состояние дисков колес.

Техническое обслуживание ходовой части автомобиля включает:

  • периодическую проверку и регулировку углов установки передних колес
  • проверку зазоров в подшипниках ступиц передних и задних колес и шкворневых соединениях передней подвески
  • проверку состояния рамы и рессорной подвески, включая амортизаторы
  • проверку состояния шин и создание нормального внутреннего давления воздуха в них
  • крепление и смазку деталей ходовой части

Углы установки передних колес

Рис. Углы установки передних колес

Проверка установки передних колес автомобиля

Проверка установки передних колес автомобиля заключается в замерах угла схождения колес, угла а развала колес, углов р поперечного наклона и у продольного наклона шкворня.

Поддержание оптимальных углов установки управляемых колес обеспечивает нормальную работу переднего моста, стабилизацию управляемых колес, устойчивость и управляемость автомобиля, уменьшение износа шин и деталей передней оси, а также снижение расхода топлива.

Углы установки управляемых колес современных отечественных автомобилей колеблются в следующих пределах: угол схождения колес составляет от +3′ до +45′. На практике вместо угла б используют линейную величину схождения колес, определяемую как разность расстояний А и Б, замеренную в горизонтальной плоскости, проходящей через центры обоих колес при нейтральном их положении. Линейная величина схождения составляет от 1,5 до 3,5 мм для легковых и от 1,5 до 12 мм для грузовых автомобилей; угол а развала колес равен от —30′ до +30′ для легковых и от +45′ до +1°30′ для грузовых автомобилей. Этот угол считается положительным при наклоне колеса наружу и отрицательным при наклоне внутрь; угол поперечного наклона шкворня составляет от 5°30′ до 7″50′ для легковых и от 6 до 8° для грузовых автомобилей, а угол продольного наклона шкворня — от 0° до 1°47′ для легковых и от 1° до 3°30′ для грузовых автомобилей. Полный контроль углов установки передних колес производят только на легковых автомобилях, имеющих независимую подвеску передних колес и низкое давление воздуха в шинах. В этом случае даже небольшие (15’—20′) отклонения от нормы углов развала и наклона шкворня значительно влияют на износ шин и ухудшают устойчивость автомобиля при движении. У грузовых автомобилей ограничиваются проверкой величины схождения передних колес и зазоров в шкворневых соединениях н подшипниках ступиц колес.

Углы установки колес автомобилей проверяют при помощи стендов и переносных приборов.

По принципу действия стенды подразделяются на механические, оптические, оптико-электрические и электрические, а переносные приборы — на механические, жидкостные и оптикоэлектрические.

Перед контролем углов установки колес автомобиля проверяют и доводят до нормы давление воздуха в шинах, осматривают детали ходовой часта и рулевого управления, подтягивают крепления, регулируют и заменяют неисправные детали. В случае необходимости регулируют затяжку подшипников ступиц передних колес, устраняют излишние зазоры в сочленениях рулевых тяг, крепят картер рулевого механизма и доливают жидкость в амортизаторы.

Телескопическая (раздвижная) линейка для контроля схождения передних колес

Наиболее простым прибором для контроля схождения передних колес является телескопическая (раздвижная) линейка.

Линейка для проверки углов схождения передних колес автомобиля

Рис. Линейка для проверки углов схождения передних колес автомобиля:
а — линейка; б — установка линейки;
1 — подвижная труба; 2 — фиксирующий винт; 3 — шкала; 4 — неподвижная труба; 5 — промежуточная труба; 6 — фиксатор; 7 — удлинитель; 8 — наконечник; 9 — цепочка; 10 — пружина; 11 — стрелка

Линейку устанавливают между колесами перед передней осью в горизонтальном положении так, чтобы конические упоры находились в одной вертикальной плоскости а-а с краями ободов, расположенными на уровне центров колес; при этом цепочки на ее концах должны касаться пола. Шкалу передвигают до совмещения указателя с нулевым делением, затем автомобиль перемещают вперед до тех пор, пока линейка не займет симметричное положение за передней осью. Перемещение шкалы относительно неподвижного указателя позволяет определить линейную величину схождения колес.

При измерениях линейкой необходимо иметь в виду, что автомобильные заводы в технических характеристиках на автомобили относят размеры, определяющие величину схождения колес, к точкам колес, расположенным на внутреннем крае обода или на боковой поверхности шины на высоте центра колеса. Пользование данными автомобильных заводов при измерении линейкой приводит к неизбежным ошибкам, достигающим 30—35%.

Поэтому при замерах линейкой ГАРО необходимо руководствоваться контрольными величинами схождения колес, указанными для данной линейки.

Угол схождения колес регулируют изменением длины поперечной рулевой тяги.

Схема замера схождения передних колес

Рис. Схема замера схождения передних колес: АА’ — по методу Автомобильного завода им. Лихачева; ББ’ — по методу Горьковского автомобильного завода; ВВ’ — при замере линейкой ГАРО

Схема независимой подвески колес автомобиля

Рис. Схема независимой подвески колес автомобиля

Угол развала колес у автомобилей с неразрезной передней осью не регулируют. Отклонение его от нормального значения указывает на износ шкворней и втулок шкворней или на изгиб оси.

У автомобилей с независимой подвеской колес угол а регулируют при помощи эксцентриковой втулки и резьбового пальца 2, соединяющего стойку 3 подвески с нижним рычагом 1.

В аналогичных конструкциях подвесок, имеющих эксцентриковые втулки с резьбой, этими втулками регулируют также продольные углы наклона шкворней.

Независимо от конструкции прибора или стенда принцип определения углов развала колеса и наклона шкворня одинаков.

Угол а развала колеса замеряют двумя способами: как геометрический угол между средней плоскостью колеса и вертикалью или как угол между осью поворотной цапфы и горизонтальной плоскостью. Так как физически средней плоскостью колеса и осью поворотной цапфы для непосредственного замера угла воспользоваться нельзя, то в качестве базы для его измерения практически наиболее часто берут боковину шины или закраину обода колеса.

Углы наклона шкворня измеряют на основании установленных геометрических соотношений и закономерностей изменения угла развала колеса в зависимости от его поворота.

Способы замера угла развала переднего колеса

Рис. Способы замера угла развала переднего колеса

Переносной жидкостный прибор (модель М-2142) для определения всех углов установки передних колес

Переносный жидкостный прибор для проверки углов установки передних колес автомобиля

Рис. Переносный жидкостный прибор для проверки углов установки передних колес автомобиля: 1 — стержень; 2 — скоба; 3 — стрелка измерителя углов поворота колес

Переносной жидкостный прибор (модель М-2142), при помощи которого могут быть определены все углы установки передних колес автомобиля, состоит из двух самостоятельных частей:

  • ватерпаса А с двойным уровнем
  • измерителей углов поворота колес В, смонтированных в ящиках (для правого и левого колес)

Ватерпас прибора М-2142 для определения углов установки колес

Рис. Ватерпас прибора М-2142 для определения углов установки колес

Ватерпас имеет на лицевой стороне два взаимно перпендикулярных уровня с тремя шкалами Шкала 3 служит для определения угла поперечного наклона шкворня, шкалы 5 и 6 — соответственно для определения углов продольного наклона шкворня и развала колеса. На обратной стороне корпуса прибора расположены два установочных уровня без шкал.

Для определения угла развала колес автомобиль устанавливают на горизонтальной площадке пола; передние колеса при этом должны занимать нейтральное положение (соответствующее движению по прямой). Прибор с уровнями укрепляют при помощи зажима 2 на гайке 1 диска или на ступице колеса в горизонтальном положении оборотной стороной вверх.

Схема определения угла развала колеса

Рис. Схема определения угла развала колеса

Схема определения угла поперечного наклона шкворня

Рис. Схема определения угла поперечного наклона шкворня: 1—уровень прибора; 2—шкворень

Кромка корпуса прибора со стороны шкалы 3 должна быть параллельна диску колеса. Поворачивая прибор на шарнирной головке зажима, устанавливают его так, чтобы пузырьки 4 уровней расположились в прорезях, имеющихся на оборотной стороне прибора, и затягивают винт шарнирной головки. Затем передвигают автомобиль вперед или назад настолько, чтобы колесо повернулось на пол-оборота, т. е. на 180°, по отношению к первоначальному положению. Как видно из рисунка, после перекатывания колеса плоскость уровня составит с горизонтальной плоскостью угол, в два раза больший угла а. Смещение пузырька 4 уровня указывает на шкале 6 действительный угол развала колес.

Угол поперечного наклона шкворня измеряют с использованием зависимости изменения угла, составляемого прямой, расположенной в горизонтальной плоскости, параллельной плоскости диска колеса. Вначале уровень 1 прибора располагают горизонтально и параллельно плоскости диска колеса, затем поворачивают его вокруг оси шкворня 2. На рисунке колесо условно повернуто на 90°. В этом случае уровень 1, оставаясь параллельным плоскости колеса, займет наклонное положение к горизонту под углом B.

При замере угла продольного наклона шкворня уровень располагают перпендикулярно плоскости диска колеса. Если условно повернуть колесо из нейтрального положения на угол 90°, уровень отклонится от горизонтали на угол, равный y.

Поскольку осуществить в действительности поворот колеса на 90 или 180° не представляется возможным, то при пользовании прибором колеса поворачивают на меньший угол (40°); при этом уровни будут отклоняться на угол, несколько меньший B или у, но шкала прибора градуируется на значения действительных углов.

Углы наклона шкворня указанным выше прибором определяют следующим образом. Колеса, установленные на поворотные диски, должны находиться в нейтральном положении. Ящики со шкалами придвигают к колесам так, чтобы стержни 1 со скобой легли на шину колеса ниже ступицы, а стрелка измерителя углов поворота колес установилась против нулевого деления шкал. Затем колесо поворачивают в одну сторону на 20° по указателю шкалы левого колеса и затормаживают. После этого ватерпас А устанавливают так, чтобы пузырьки поперечного и продольного уровней находились на нулевом делении, а кромка ватерпаса со стороны поперечного уровня была параллельна колесу.

Схема определения угла продольного наклона шкворня

Рис. Схема определения угла продольного наклона шкворня: 1 — прибор; 2 — шкворень

Установив прибор, поворачивают колеса в другую сторону от нулевого деления шкалы измерителя угла поворота на 20° и по шкалам 3 и 6 определяют углы наклонов шкворня данного колеса. В том же порядке определяют углы установки другого колеса. Одновременно по положению стрелок измерителей и шкалам можно определить соотношение углов поворота колес. Неправильное соотношение углов поворота приводит к повышенному износу шин.

Оптический стенд стационарного типа для контроля установки передних колес

На рисунке представлена схема оптического стенда стационарного типа для контроля установки передних колес. На этом стенде все углы установки измеряют оптическим методом за исключением угла поперечного наклона шкворня, который определяют по уровню.

Оптическая система стенда состоит из стойки 3 с измерительным микроскопом 4 и наклонным зеркалом 2, площадки с измерительной шкалой 1 и зеркального отражателя 5, устанавливаемого на переднем колесе, к ободу которого он крепится при помощи кронштейна 7. Зеркальный отражатель состоит из трех зеркал. Среднее зеркало располагается параллельно плоскости колеса, а два других наклонены к нему в вертикальной плоскости под углом 20°. На верхней стороне рамки зеркального отражателя установлен уровень 6, по шкале которого определяют поперечный наклонтнкворней колес автомобиля. Микроскоп 4 крепится на призматических направляющих, допускающих его перемещение вдоль оптической оси, перпендикулярной продольной оси стенда. На линзе объектива зрительной трубки микроскопа 4 нанесены две взаимно перпендикулярные линии I—I и II—II.

 Схема оптического стенда ГАРО

Рис. Схема оптического стенда ГАРО модели 1119 для замера углов установки передних колес автомобиля

На площадке с измерительной шкалой 1 имеются также две взаимно перпендикулярные линии с делениями (шкалы), из которых вертикальная служит для замера углов развала, а горизонтальная — углов схождения и углов поворота колес. Продольный угол наклона шкворня, определяемого по изменению угла развала при повороте переднего колеса вправо и влево на 20″, замеряется по вертикальной шкале. Поперечный угол наклона шкворня измеряется по уровню 6 в результате изменения его наклона также при повороте колес вправо и влево на 20° от среднего положения. Колеса при измерении углов их установки и правильности углов поворота устанавливаются на поворотные диски 8.

Принцип измерения на оптическом стенде заключается в определении угла наклона зеркального отражателя установленного параллельно плоскости колеса по величине смещения изображения крестообразной шкалы относительно визирной сетки микроскопа или двух пересекающихся линий, нанесенных на объективе его зрительной трубы.

При определении угла развала колесо поворачивают в положение, при котором вертикальная линия объектива микроскопа совпадает с вертикальной измерительной шкалой; тогда горизонтальная линия I — I объектива микроскопа покажет по шкале развала угол развала колеса.

При измерении угла развала колеса по видимому в окуляре микроскопа 4 делению шкалы получаем двойной угол. Увеличение угла отражения, видимое на шкале, по сравнению с действительным наклоном зеркала или колеса повышает точность замера.

Угол схождения колес определяют при той же установке стенда, что и для замера угла развала, т. е. при установке одного колеса (правого или левого) параллельно продольной оси автомобиля. В этом случае второе колесо поворачивается на двойной угол схождения колес.

На рисунке г показана схема замера схождения колес автомобиля, имеющего переднее расположение рулевой трапеции. Смещение вертикальной визирной линии перекрестья окуляра микроскопа вправо (линия II—II) или влево относительной нулевой точки горизонтальной шкалы измерительной площадки указывает соответственно на отрицательное или положительное схождение колес.

Угол продольного наклона шкворня замеряют при заторможенных колесах поворотом колеса вначале вправо па 20° до совпадения вертикальной визирной линии микроскопа с нулем шкалы схождения, затем влево так же на 20° до совпадения вертикальной линии микроскопа и шкалы. По шкале развала замеряют значения угла а в двух положениях и по разности этих углов находят угол у.

Угол поперечного наклона шкворня определяют по уровню, установленному на рамке зеркального отражателя. Для этого, повернув колесо на 20° влево, устанавливают уровень на нуль его шкалы, после чего поворачивают колесо на 20° вправо и по шкале уровня отсчитывают значение угла B.

Читать статью  Диагностика грузовиков Интернационал ремонт автоэлектрики International с выездом

Механические стенды

Более простыми и падежными являются механические стенды, получившие в настоящее время наибольшее распространение. Эти стенды имеют металлическую эстакаду, на которую устанавливается автомобиль, поворотные круги под передние колеса и две измерительные головки со шкалами. В механических стендах обычно замеряют только три угла из пяти: развал, схождение и соотношение поворота колес.

На рисунке показан общий вид механического стенда. Измерительная головка 1 установлена па специальной раме 4, расположенной поперек осмотровой канавы. В средней части рамы имеются поворотные диски 2 и гидравлические домкраты 3.

Общий вид механического стенда для замера углов установки колес легковых автомобилей

Рис. Общий вид механического стенда для замера углов установки колес легковых автомобилей

Поворотные диски снабжены шкалой 5 и указателем 6, позволяющими проверять соотношение углов поворота передних колес. Домкраты служат для вывешивания колес при определении их точек равного биения с целью более точного замера углов. Измерительная головка имеет шток 1, продольно перемещающийся в конусных втулках 2. На конце штока закреплен валик 8, вокруг которого поворачивается штанга 10. По штанге перемещаются упорные наконечники 9, соприкасающиеся при замере углов с боковой поверхностью шины или закраинами обода колеса. Штанга 10, поворачиваясь со штоком 1, может устанавливаться в горизонтальном и вертикальном положениях.

Поворот штанги относительно валика 8 через рычажный механизм 4, 5 и 6 передается на стрелку 3, показывающую по шкале замеренный угол.

Для измерения углов схождения штангу устанавливают в горизонтальном положении и придвигают вместе со штоком к колесу до соприкосновения с ним упорных наконечников. При измерении углов развала штангу устанавливают в вертикальном положении. Угол поворота штанги относительно оси 8 фиксируется стрелкой 3 на шкале 7. Соотношение углов поворота колес автомобиля определяют по шкалам поворотных дисков. Необходимо иметь в виду, что в заводских инструкциях углы установки передних колес легковых автомобилей отечественного производства указаны с учетом полной их нагрузки.

На легковых автомобилях с независимой подвеской передних колес при отсутствии нагрузки углы развала и поперечного наклона шкворней значительно уменьшаются. Поэтому во избежание ошибок при регулировке установки передних колес у негруженых автомобилей необходимо корректировать значение регулируемых углов в сторону увеличения минимального значения угла (например, для автомобилей ГАЗ-21 «Волга» на 20″).

Измерение радиального и осевого зазоров в шкворнях

Износ в шкворневом соединении передних колес грузовых автомобилей контролируют по величине радиального и осевого зазоров.

Радиальный зазор (Лр ) в шкворневом соединении определяют по перемещению поворотной цапфы относительно шкворня при подъеме и опускании домкратом передней оси (до опоры колеса на пол).

Как видно из схемы, угол развала колеса при опускании на пол уменьшается за счет зазоров, образуемых вследствие износа шкворня и втулки.

 Измерительная головка стенда

Рис. Измерительная головка стенда

Перемещение цапфы фиксируют при помощи индикатора 1, устанавливаемого на балке передней оси при помощи зажима 3. Стержень индикатора соприкасается с нижней частью опорного тормозного диска 2. Поскольку диаметр диска примерно в два раза больше длины шкворня, индикатор показывает радиальный зазор вдвое больший действительного, что повышает точность замера. Радиальный зазор для грузовых автомобилей (типа ЗИЛ и ГАЗ ) не должен превосходить 0,75 мм.

Осевой зазор замеряют плоским щупом, вставляемым между верхней проушиной цапфы и кулаком передней оси.

Увеличенный зазор между обоймой подшипника и его гнездом в ступице и степень затяжки подшипников ступиц колес может быть выявлен покачиванием колес в поперечной плоскости после устранения люфта в шкворневом соединении. При регулировке зазора в подшипнике его гайку затягивают ключом с динамометрической рукояткой с определенным усилием. При использовании для регулировки простого ключа гайку предварительно затягивают до начала торможения колеса в вывешенном состоянии, а затем отвертывают на 1/3 — 1/2 оборота до начала свободного вращения колеса. Правильно отрегулированное колесо должно от толчка рукой вращаться не менее чем на 8—10 оборотов.

Изменение положения переднего колеса

Рис. Изменение положения переднего колеса при наличии зазора в шкворневом соединении: а — в поднятом состоянии; б — в опущенном состоянии

Проверка динамической балансировки колес

У легковых автомобилей необходимо периодически проверять динамическую балансировку колес.

При контроле технического состояния шин их осматривают, проверяют давление воздуха, подкачивают шины, удаляют острые предметы, застрявшие в протекторе (стекло, гвозди и т.п.), проверяют зазор между сдвоенными шинами (20—30 мм для шин малого размера и 40—50 мм — большого размера), проверяют состояние вентиля и обода колеса (наличие вмятин, заусенцев и коррозии). Выпуск на линию автомобилей, у которых давление воздуха в шинах не соответствует норме, не допускается.

Для измерения давления воздуха в шинах применяют манометры поршневого или пружинного типа. Манометр поршневого типа прижимают наконечником 1 к вентилю камеры, утапливая золотник. Из камеры воздух поступает по каналу наконечника под поршень 2 и перемещает его, сжимая тарированную пружину 3. Вместе с поршнем перемещается латунный цилиндрический окрашенный в красный цвет экран 4, скользящий по направляющей трубке 5. При отнятии манометра от вентиля поршень под действием пружины 3 возвратится в исходное положение, а экран останется на месте.

В верхней части корпуса манометра имеется окно, закрытое прозрачным целлулоидом, на котором нанесена шкала делений 6. По кромке экрана 4 и шкале 6 определяют давление воздуха в шине. Точность показаний манометра — в пределах цены одного деления шкалы (0,1 или 0,2 кГ/см2).

Манометр поршневого типа

Схема наконечника с манометром для накачки шин воздухом

Рис. Схема наконечника с манометром для накачки шин воздухом:
1 — кнопка; 2 и 10 — пружины; 3, 6 и 8 — седла; 4 и 9 — клапаны; 5 — манометр; 7 и 11 — штуцеры

Поршневые манометры применяют преимущественно в дорожных условиях. Для контроля давления воздуха в шинах в гаражах применяют наконечники с манометром для воздухораздаточного шланга от компрессора или воздушной магистрали. Схема наконечника с манометром пружинного типа приведена на рисунке.

При отпущенной кнопке (положение I) клапан 4 под давлением воздуха, поступающего через штуцер 7 из шланга, соединенного с шиной, а клапан 9 под действием пружины 10 и давления воздуха, поступающего через штуцер 11 из магистрали, прижимаются соответственно к седлам 3 и 8. Манометр 5 в этом случае показывает давление воздуха в шине. При нажатии кнопки 1 (положение II) до отказа воздух из воздушной магистрали поступает к шине.

При неполном нажатии кнопки 1 (положение III) клапан 9 прижмется к седлу 8, а клапан 4 будет находиться при этом в промежуточном положении. В этом положении воздух из шины может выходить наружу и давление воздуха в ней будет снижаться до момента, пока кнопка не займет своего крайнего положения (I). Это дает возможность установить требуемое давление воздуха в шине.

Сжатый воздух для накачивания шин получают из компрессорных установок, а для раздачи воздуха применяют воздухораздаточные колонки.

Воздухораздаточная колонка представляет собой устройство, состоящее из механизма (регулятора давления) контролирующего давление воздуха, до которого должна быть накачана шина, и шланга, автоматически отключающего подачу сжатого воздуха; иногда колонка имеет механизм для автоматического сматывания длинного шланга на барабан.

Автоматические регуляторы давления по принципу действия можно подразделить на пневмомеханические и электромеханические.

В качестве задающего и регулировочного устройства в регуляторах первого типа служат воздушный манометр и пружина, уравновешивающая давление воздуха, и второго типа — электроконтактный манометр. Исполнительным устройством в пневмомеханических регуляторах служит отсечный плоский или шариковый клапан, а в электромеханических — соленоидный электромагнитный клапан. Принципиальная схема регулятора первого типа показана на рисунке. Регулятор давления воздуха устанавливают в требуемое положение поворотом маховичка 1, который сжимает пружину 3; пружина 3 через толкатель 2 давит на диафрагму 4 и далее на клапан 5, который в этом случае будет находиться в открытом состоянии и пропускать воздух из воздушной магистрали в полость под диафрагму.

Схема работы регулятора давления воздуха

Рис. Схема работы регулятора давления воздуха

Поворачивая маховичок 1 при закрытом кране 6, изменяют величину открытия клапана 5 (дросселируя давление воздуха) до тех пор, пока на манометре 7 не установится требуемая величина давления воздуха. После этого открывают кран 6 и сообщают колонку с вентилем накачиваемой шины. Как только в шине будет достигнуто установленное по манометру давление воздуха, под диафрагмой регулятора возникнет избыточное давление, неуравновешиваемое пружиной; при этом диафрагма, прогибаясь вверх, сожмет пружину и освободит клапан 5, который перекроет подачу воздуха из магистрали.

Диагностирование и ТО трансмиссии автомобиля

1. Общие положения и неисправности

Основными агрегатами трансмиссии автомобиля являются: сцепление, коробка передач, раздаточная коробка, карданная передача, ведущий мост.

Трансмиссия автомобиля работает в условиях высоких знакопеременных динамических нагрузок. Основные рабочие детали трансмиссии большую часть времени находятся под высокими удельными нагрузками и напряжениями — это одна из трудностей достижения требуемой надежности трансмиссии. Затраты на ТО и текущий ремонт (ТР) агрегатов трансмиссии грузовых автомобилей составляют от 12 до 22 % общих затрат по их обслуживанию.

Основными причинами отказов трансмиссии являются: нарушение параметров регулировки и режимов смазки; образование чрезмерных суммарных зазоров в сопряжениях, вызывающих значительные динамические нагрузки в элементах кинематических пар агрегатов трансмиссии.

Основные неисправности механизмов трансмиссии:

  • пробуксовка или неполное выключение сцепления;
  • резкое включение сцепления (рывки при трогании с места);
  • шум при работе коробки передач;
  • самопроизвольное выключение и затрудненное переключение передач;
  • биение карданного вала;
  • шум и усиленный нагрев главной передачи ведущего моста.

При пробуксовке сцепления часть мощности, развиваемой двигателем, бесполезно расходуется на нагрев и усиленный износ сцепления; резко ухудшаются тяговые качества автомобиля (особенно при возрастании нагрузки) и значительно увеличивается расход топлива.

Основные причины пробуксовки сцепления:

  • износ фрикционных накладок;
  • замасливание дисков;
  • потеря упругости нажимных пружин;
  • ослабление затяжки центральной пружины (у сцеплений с центральной пружиной);
  • отсутствие свободного хода педали сцепления;
  • неправильная установка внутренних концов выжимных рычагов сцепления относительно рабочей поверхности нажимного диска;
  • потеря упругости диафрагменного диска (у сцеплений диафрагменного типа).

При неполном выключении сцепления (сцепление «ведет») затрудняется переключение передач в коробке передач, при переключении передач наблюдаются шумы и стуки в коробке передач, усиленно изнашиваются шестерни и синхронизаторы коробки передач.

Основные причины неполного выключения сцепления:

  • большой зазор между выжимным подшипником и выжимными рычагами;
  • наличие воздуха в гидравлическом приводе сцепления;
  • коробление ведомого диска;
  • установка внутренних концов выжимных рычагов в плоскости, не перпендикулярной к оси коленчатого вала, или не в одной плоскости;
  • поломка нажимных пружин;
  • неправильная регулировка отхода переднего ведущего диска (у двухдисковых сцеплений).

При резком включении сцепления наблюдаются рывки в момент, когда автомобиль трогается с места, что существенно увеличивает динамические нагрузки в трансмиссии и вызывает поломки зубьев шестерен коробки передач и заднего моста.

Основные причины резкого включения сцепления:

  • коробление ведомого диска;
  • установка внутренних концов выжимных рычагов не в одной плоскости или в плоскости, не перпендикулярной к оси коленчатого вала;
  • наличие сетки мелких трещин на рабочей поверхности ведущего диска, появляющихся вследствие перегрева при пробуксовке сцепления.

Шум при работе коробки передач наблюдается из-за износа подшипников, шестерен и валов коробки передач.

Причинами самопроизвольного выключения передач является износ фиксаторов, шестерен и синхронизаторов.

Причины затрудненного переключения передач:

  • загрязнение механизма управления коробки передач, неправильная регулировка этого механизма;
  • неправильная регулировка привода управления коробкой передач;
  • неправильная регулировка сцепления (сцепление «ведет»).

Причинами биения карданного вала являются:

  • изгиб вала вследствие наезда на дорожные препятствия;
  • нарушение балансировки из-за износа шлицевой вилки и шлицевого наконечника карданного вала, а также крестовин и их подшипников;
  • неправильная сборка карданного вала (вилки вала должны лежать в одной плоскости, причем метки на шлицевой вилке и шлицевом наконечнике, которые наносятся при балансировке карданного вала, должны быть совмещены, а при отсутствии таких меток они должны быть нанесены перед разборкой карданного вала).

При наличии биения карданного вала усиленно изнашиваются агрегаты трансмиссии, появляется вибрация кузова.

Основной причиной шумной работы главной передачи ведущего моста является нарушение правильного зацепления шестерен вследствие износа шестерен и подшипников.

2. Методы диагностирования трансмиссии

Для своевременного обнаружения неисправностей и предупреждения отказов агрегатов трансмиссии применяются различные методы диагностирования: метрический, акустический, виброакустический, термический и др.

К метрическому методу диагностирования технического состояния агрегатов трансмиссии можно отнести способы контроля по параметрам, количественные значения которых измеряются сравнительно несложными приборами — люфтомером или индикатором. Для проверки зазора в карданном шарнире или шлицевом соединении одной рукой берут карданный вал около места соединения, другой стараются повернуть его в обе стороны либо покачать, а также приподнимают каждую из сторон шарнира 1 (рис. 1).

Направление вращения и перемещения карданного вала во время проверки зазора в карданном шарнире и шлицевом соединении

Рис. 1. Направление вращения и перемещения карданного вала во время проверки зазора в карданном шарнире (1) и шлицевом соединении (2)

Увеличенные люфты в карданной передаче и в остальных агрегатах трансмиссии можно определять с помощью люфтомера углового, который позволяет определять угловой зазор в трансмиссии автомобиля и ее отдельных агрегатах.

Люфтомер типа КИ-4832 (рис. 2) состоит из динамометрической рукоятки, зажима с двумя губками для установки люфтомера на вилке карданного шарнира заднеприводного автомобиля и измерительного диска.

Измерительный ди ск, вращающейся на оси, проградуирован (в угловых градусах): пределы измерений ±90°, цена деления шкалы 0,5°. На измерительном диске имеется герметичное полукольцо из прозрачного материала, в которое до половины его объема залита подкрашенная жидкость.

Люфтомер угловой КИ-4832

Рис. 2. Люфтомер угловой КИ-4832: 1 — губки зажима; 2 — измерительный диск; 3 — полукольцо с жидкостью; 4 — стрелка измерения момента поворота; 5 — шкала динамометрической рукоятки; 6 — динамометрическая рукоятка

С помощью специальных зажимов прибор закрепляют на валу, который проворачивают в одну сторону до устранения зазора, и устанавливают нулевую отметку на шкале измерительного диска. Полное устранение зазора определяют по резкому увеличению показаний рычажного динамометра. Проворачивая вал в другую сторону, определяют величину суммарного зазора карданной передачи, соединенной с валом.

Для определения зазора в главной передаче шестерни в коробке передач устанавливают в нейтральное положение и затормаживают ведущие колеса. Согласно экспериментальным данным предельные значения угловых зазоров в трансмиссии грузовых автомобилей равны: в карданной передаче 5…6°, в коробке передач 5…15°, в главной передаче 55…65°.

Для проверки величины биения карданного вала применяют устройство КИ-8902А (рис. 3).

Устройство имеет электромагнит 1, к которому через телескопический зажим 5 крепится индикатор 7 перемещений часового типа. Его крепят к раме автомобиля с помощью электромагнита, подключенного к бортовой сети напряжением 12 В, вывешивают ведущие колеса неработающей машины и включают нейтральную передачу. Пользуясь телескопическим зажимом, подводят поводок индикатора до соприкосновения с карданным валом. Проворачивая карданный вал на один оборот, определяют величину биения;

Читать статью  Редуктор заднего моста: устройство, разборка и ремонт

Схема устройства КИ-8902А

Рис. 3. Схема устройства КИ-8902А: 1 — электромагнит; 2 — рукоятка; 3 — рычаг; 4 — сухарь; 5 — телескопический зажим; 6 — корпус; 7 — индикатор; 8 — крышка; 9 — карданный вал для грузовых автомобилей эта величина не должна превышать 1,2 мм.

Проверку пробуксовки сцепления проводят с помощью стробоскопа, в котором момент возникновения вспышек синхронизирован с частотой вращения коленчатого вала двигателя.

На карданный вал в месте, доступном для освещения стробоскопом, наносится меловая отметка. Для создания нагрузки на сцепление автомобиль устанавливают на стенд с беговыми барабанами, в коробке передач включается прямая передача, затем стробоскопом освещают вращающийся карданный вал. При отсутствии пробуксовки сцепления меловая отметка будет казаться неподвижной. Состояние уплотнений карданных шарниров и шлицевого соединения проверяют путем внешнего осмотра.

Осматривают также переднюю эластичную резиновую муфту: на ней не должно быть раздутий и повреждений резины, расколов вокруг монтажных болтов; наличие масляных загрязнений на муфте свидетельствует об износе заднего сальника коробки передач, на заднем карданном шарнире — об износе сальника главной передачи. Аналогичным образом осматривают промежуточную опору. Подшипник промежуточной опоры проверяют путем подъема вала; если при этом ощущается перемещение (люфт), подшипник необходимо снять и проверить его состояние, покрутив наружное кольцо рукой; при значительном износе подшипник подлежит замене. В процессе осмотра необходимо также проверить затяжку всех монтажных болтов.

Сущность акустического метода заключается в том, что работа любого агрегата трансмиссии сопровождается ударными нагрузками деталей, соединенных в кинематические пары: шестерен, подшипников, шлицевых соединений и др. Звуковые волны, вызванные ударами сопряженных деталей друг о друга, являются сигналами, несущими информацию к диагностической аппаратуре. Приемником этих волн является диагностический датчик, который крепится в наиболее удобном месте на картере агрегата. Воспринимаемые датчиками колебания волны преобразуются в электросигналы, которые по проводам передаются к приборам блока обработки и анализа информации. Сложность расшифровки полученной информации состоит в том, что в работающем агрегате все его кинематические пары генерируют звуковые сигналы одновременно. Поэтому диагностическая аппаратура решает две задачи: вначале все зафиксированные сигналы надо разделить на отдельные составляющие, т.е. выявить сигналы по различиям генерирующих их пар, затем расшифровать интересующий (выделенный) сигнал, т.е. по его значению определить техническое состояние сопряжения.

Виброакустический метод диагностирования состоит в следующем. В подвижных сопряжениях агрегата трансмиссии энергия, передаваемая от одной детали к другой, и амплитуда вибраций пропорциональны величинам зазора или надлома, количеству трещин и осколков в деталях данной пары. Увеличение или уменьшение зазора вызывает рост ускорения вибраций. Таким образом, измерив ускорение вибрации данного сопряжения и сравнив его с эталонным значением, можно оценить техническое состояние диагностируемого узла. В процессе эксплуатации автомобилей можно по параметрам вибраций установить такой зазор, при котором обеспечивается наилучшая геометрия зацепления, т.е. исправное техническое состояние агрегата.

В основе термического метода диагностирования состояния агрегатов трансмиссии автомобиля лежит измерение температурных полей. Сравнивая полученное при измерении температуры выбранного на агрегате поля с эталонным, можно дать заключение о техническом состоянии диагностируемого агрегата.

Главным недостатком акустического, виброакустического и термического методов диагностирования является высокая стоимость оборудования, поэтому они не нашли широкого практического применения.

При общем диагностировании трансмиссии определяют механические потери по продолжительности движения автомобиля накатом, шумы и перегревы агрегатов, самопроизвольное выключение передач при ходовых или стендовых испытаниях автомобиля. Одновременно с этим принимают во внимание данные о механических потерях в трансмиссии, полученные при диагностировании автомобиля в целом, а также результаты внешнего осмотра (отсутствие подтеканий, деформаций и др.).

При поэлементном диагностировании трансмиссии определяют техническое состояние сцепления, коробки передач, раздаточной коробки, карданной передачи и ведущих мостов.

3. Регулировка и замена рабочих жидкостей в агрегатах трансмиссии

Сцепление. Обслуживание сцепления и его привода заключается: в проверке переключения передач; своевременной подтяжке болтовых соединений; проверке свободного хода педали; регулировке привода сцепления и его смазке; устранении отдельных неисправностей.

Проверка переключения передач производится главным образом при включении задней передачи, так как в грузовых автомобилях она обычно не синхронизирована. Если при включении задней передачи слышен скрежет, то это свидетельствует о необходимости регулировки или ремонта сцепления.

Основные проверки и регулировки сцепления рассмотрим на примере автобуса МАЗ 107 с гидропневматическим приводом сцепления. При ТО автобуса проверяют и при необходимости регулируют свободный ход А (рис. 4) на конце педали сцепления.

Схема гидропневматического привода сцепления

Рис. 4. Схема гидропневматического привода сцепления: А — свободный ход на конце педали сцепления; Б — ход толкателя; В — величина выхода индикатора износа ведомого диска; 1 — педаль; 2 — резервуар для тормозной жидкости; 3, 10 — гидравлические трубопроводы; 4 — датчик износа ведомого диска; 5, 12 — толкатели; 6 — рычаг-вилка; 7 — пневмогидроусилитель; 8 — клапан прокачки; 9 — воздушный трубопровод; 11 — подпедальный цилиндр; 13, 15 — контргайки; 14 — оттяжная пружина; 16 — упор

Свободный ход А на конце педали сцепления должен составлять 2…4 мм, что обеспечивает зазор 0,5…1,0 мм между толкателем 12 и поршнем подпедального цилиндра 11. Свободный ход регулируют вращением толкателя 12 при отпущенной контргайке 13 (при вворачивании толкателя в вилку свободный ход педали увеличивается).

При ТО проверяется также износ ведомого диска по датчику 4. При увеличении размера В до 25 мм ведомый диск сцепления необходимо заменить. После удаления воздуха из привода сцепления, проверяют его работу и перемещают стержень датчика износа ведомого диска 4 до упора в сторону двигателя и кольцо на стержне — до упора в корпус пневмогидроусилителя 7.

При замене деталей привода сцепления необходимо проверить и при необходимости отрегулировать рабочий ход педали сцепления. Его регулируют после полного удаления воздуха из гидропривода вращением упора 16 при отпущенной контргайке 15 (при заворачивании болта рабочий ход педали увеличивается). Рабочий ход считается нормальным, если ход толкателя 5 (размер Б) составляет 21…23 мм.

Замену тормозной жидкости гидропривода сцепления проводят по рекомендациям производителя, обычно один раз в 2–3 года. При замене жидкости и в случае проваливания педали из системы гидропривода удаляют воздух.

Для удаления воздуха из гидропневматического привода сцепления необходимо: удалить воздух из ресивера потребителей через контрольный клапан в блоке диагностики; полностью заполнить резервуар для тормозной жидкости; снять защитный колпачок с клапана прокачки (см. рис. 4), надеть на головку клапана шланг и опустить другой его конец в емкость с тормозной жидкостью; отвернуть клапан на 1/2…3/4 оборота и резко нажать на педаль сцепления, а затем плавно ее отпустить; продолжать прокачку до выхода жидкости из шланга без пузырьков воздуха, доливая жидкость в резервуар.

Прокачка тормозной жидкости с использованием источника подачи жидкости под давлением 0,1…0,2 МПа производится в том же порядке, но более производительно.

Коробка передач и раздаточная коробка. Техническое обслуживание коробки передач (рис. 5) и раздаточной коробки заключается: в осмотре и проверке крепления картеров и крышек; в поддержании нормального уровня масла, устранении течи, замене масла; проведении регулировочных работ.

Замену масла в коробке передач производят после поездки, пока оно находится в горячем состоянии, соблюдая меры предосторожности, так как касание как коробки передач, так и контакта с трансмиссионным маслом могут привести к ожогам. Количество масла, заливаемого в коробку, указано на специальной табличке, размещенной сбоку на коробке, или в инструкции по эксплуатации.

Для замены масла отворачивают обе резьбовые сливные пробки (см. рис. 5), так как в поддоне картера коробки имеется перегородка, поэтому через одно отверстие вылить все масло невозможно, и сливают старое масло в соответствующую емкость. Затем очищают резьбовые сливные пробки с магнитной заглушкой, заменяют пробки и заворачивают их с моментом силы 60 Н · м.

синхронизированная механическая коробка передач типа ZF с пневматическим приводом переключения отдельных передач

Рис. 5. Общий вид сбоку (а) и снизу (б) синхронизированной механической коробки передач типа ZF с пневматическим приводом переключения отдельных передач: 1 — резьбовая сливная пробка с магнитной заглушкой; 2 — резьбовая пробка для заполнения масла; 3 — сапун; 4 — резьбовая сливная пробка без магнитной заглушки

В коробки передач типа ZF (Zahnradfabrik), устанавливаемые на многих грузовых автомобилях, производимых в странах постсоветского пространства, масло заливают согласно спецификации смазочных материалов ZF TE-ML 02. В других механических коробках передач используют масла класса API GL5 с вязкостью класса SAE 80,80W,80W/85. Интервалы смены масла для синхронизированных механических коробок передач указаны в инструкциях по их эксплуатации и обычно масло заменяют после 90 000 км (при эксплуатации автомобиля по загородным трассам) или 45 000 км пробега (при использовании на строительных площадках или в тяжелых условиях) или обязательно один раз в год.

При замене современных видов масел промывка коробки передач обычно не требуется. Однако при ремонте коробки или сильном загрязнении ее промывка иногда необходима. Для промывки коробки передач рекомендуется использовать специальное промывочное масло, а при его отсутствии — 2,5…3,0 л веретенного масла. Для промывки при нейтральном положении рычага управления коробкой передач на 7…8 мин запускают двигатель, затем его останавливают, промывочное масло сливают и заполняют коробку передач маслом, предусмотренным картой смазки.

Поскольку в коробке передач имеется масляный насос, категорически запрещается промывать коробку передач керосином или дизельным топливом, потому что недостаточное разрежение на всасывании может привести к его отказу в работе.

Заливают масло через маслоналивное отверстие до такого уровня, при котором масло достигает нижнего края отверстия или выливается из него. При использовании коробки передач с теплообменником дополнительно меняют масло и в нем. После этого переключают коробку передач в нейтральное положение, запускают двигатель, дают ему поработать 3 мин при частоте вращения 1200 об/мин для того, чтобы теплообменник и соединительные трубки заполнить маслом. Затем снова проверяют уровень масла.

Проверка уровня масла производится на автомобиле, стоящем на горизонтальной площадке, при температуре масла меньше 40 °С. Из-за нагревания масла при движении автомобиля внутри коробки передач создается повышенное давление. Для снижения давления наверху коробки передач установлен сапун (см. рис. 5), который необходимо постоянно прочищать.

Поскольку в пневматическом приводе коробки образуется конденсационная влага, его ресиверы необходимо обезвоживать еженедельно, а зимой ежедневно. Чтобы конденсат и ржавчина не попадали из ресивера в клапаны и пневмоцилиндры, необходим регулярный ТО пневматической системы.

Регулировка привода управления коробки передач заключается в том, чтобы добиться соответствия вертикального положения рычага переключения в кабине водителя нейтральному положению рычага переключения на коробке передач и чтобы при этом опора 2 (рис. 6) находилась в среднем положении между съемной вилкой 5 и фланцем валика 1. Все регулировки осуществляются с помощью регулировочных вилок-клемм 6. Отпустив стяжные болты 7 вилки-клеммы и вращая клемму или соответствующий вал, добиваются необходимой длины и угла.

Узлы привода коробки передач PRAGA

Рис. 6. Узлы привода коробки передач PRAGA (грузовые автомобили и автобусы): 1 — валик; 2 — опора; 3 — чехол; 4, 7 — стяжные болты; 5 — съемная вилка; 6 — вилка-клемма; 8 — шпонка

После регулировки проверяют работу привода переключения передач. Рычаг переключения передач должен перемещаться в крайние положения плавно, без заеданий и четко фиксироваться.

В нейтральном положении выходного фланца механизма переключения передач рычаг переключения передач должен занимать вертикальное положение.

Техническое состояние главной передачи проверяют методами виброакустического диагностирования, а также по уровню шума при работе, суммарному окружному люфту вала ведущей шестерни, зазору между зубьями шестерен рабочей пары и осевому люфту вала ведущей шестерни.

Суммарный окружной люфт в главной передаче определяют с нормируемым моментом силы проворачивания при нейтральном положении рычага переключения передач и заторможенных задних колесах. Суммарный окружной люфт в карданной передаче должен быть не больше 2°, в коробке передач (в зависимости от включенной передачи): на первой передаче и заднем ходу не больше 2,5°; на второй передаче — 3,5°, на третьей — 4,0°, на четвертой и пятой — 6,0°.

Основными работами по проверке ведущих мостов автомобилей и автобусов являются: проверка и регулировка подшипников ступиц колес (см. 5); регулировка главной передачи (центрального редуктора).

Ведущие мосты (главная передача). Регулировка главной передачи (центрального редуктора) производится при снятом редукторе в следующей последовательности:

  • регулировка натяга подшипников ведущей конической шестерни;
  • регулировка натяга подшипников дифференциала;
  • регулировка и проверка зацепления шестерен редуктора и подрегулировка подшипников дифференциала.

Для регулировки натяга подшипников ведущей конической шестерни ее снимают вместе со стаканом подшипников, используя демонтажные болты (рис. 7).

Схема редуктора заднего моста грузового автомобиля МАЗ

Рис. 7. Схема редуктора заднего моста грузового автомобиля МАЗ: 1 — шестерня ведомая; 2 — прокладка регулировочная; 3, 18 — подшипники; 4, 5 — сальники; 6 — фланец; 7 — гайка фланца; 8 — кольцо уплотнительное; 9 — крышка; 10 — болт; 11 — прокладка; 12 — стакан подшипников; 13 — регулировочная прокладка зацепления шестерен; 14 — шестерня ведущая коническая; 15 — сателлит; 16, 23 — чашки дифференциала; 17 — гайки регулировки натяга подшипников дифференциала; 19 — крышка подшипника; 20 — крестовина; 21 — шестерня полуоси; 22 — шайба опорная; 24 — муфта блокировки дифференциала; 25 — картер моста; 26 — цилиндр механизма блокировки; 27 — поршень; 28 — вилка включения механизма блокировки; 29 — картер редуктора

Затем, закрепив корпус стакана подшипников 12 в тисках, следует определить индикатором осевой зазор в подшипниках; освободив корпус стакана подшипников, зажать в тисках ведущую коническую шестерню 14 (предохранив ее от повреждения прокладками из мягкого металла). После этого снимают фланец 6, крышку 9 с сальниками 4 и 5, внутреннее кольцо ближнего к хвостовику подшипника и регулировочную прокладку 2.

Замеряют толщину регулировочной прокладки, рассчитывают необходимую толщину прокладки для устранения осевого люфта и получения предварительного натяга подшипников (уменьшение толщины прокладки должно равняться сумме замеренного индикатором осевого люфта и величины натяга подшипников, равного 0,03…0,05 мм). Затем регулировочную прокладку шлифуют до требуемой толщины и собирают ведущую коническую шестерню без закрепления крышки с сальниками, так как трение сальника о шейку фланца не позволит точно измерить момент силы сопротивления проворачивания шестерни в подшипниках. При затяжке гайки фланца 7 поворачивают стакан подшипников для правильного размещения роликов в своих обоймах. Проверяют натяг подшипников по величине момента силы проворачивания стакана подшипников, который можно определить динамометрическим ключом на гайке 7.

При нормальном предварительном натяге в подшипниках снимают фланец 6, устанавливают на место крышку 9 с сальниками и окончательно собирают узел.

Читать статью  Ремонт раздаточной коробки автомобиля: причины неисправностей, стоимость работ — Статьи

Регулировку натяга подшипников дифференциала производят при снятой ведущей конической шестерне с помощью гаек 17 (см. рис. 7), которые необходимо заворачивать специальным ключом с обеих сторон на одинаковую величину до получения нужного предварительного натяга, не нарушая положения ведомой шестерни 1. Предварительный натяг подшипников определяется величиной момента силы, необходимой для проворачивания дифференциала (должен быть 2…5 Н · м при снятой ведущей шестерне).

Для проверки и регулировки зацепления шестерен редуктора необходимо: перед установкой стакана подшипников с ведущей конической шестерней в картер редуктора 29 зубья конических шестерен протереть насухо и нанести на боковые поверхности трех-четырех зубьев тонкий слой краски; установить в картер редуктора стакан подшипников с ведущей конической шестерней, завернуть четыре накрест лежащие гайки шпилек (на рис. 7 не показаны) и проворачивать за фланец ведущую шестерню в обе стороны; отрегулировать в соответствии с табл. 1 зацепление конических шестерен. Перемещение ведущей конической шестерни 14 (см. рис. 7) обеспечивается изменением регулировочных прокладок зацепления шестерен 13 под фланцем корпуса подшипников данной шестерни.

Таблица 1. Проверка качества зацепления ведомой шестерни по положению пятна контакта

а если боковой зазор будет мал,

если боковой зазор будет велик,

если боковой зазор будет мал,

если боковой зазор будет велик,

Зацепление шестерен считается нормальным, если на обеих сторонах зубьев ведомой шестерни пятно контакта расположено ближе к узкому их торцу, занимая 2/3 длины, и не выходит на вершину и основание.

Для перемещения ведомой шестерни 1 (см. рис. 7) используют гайки регулировки натяга подшипников дифференциала 17. Чтобы не нарушать регулировку натяга в подшипниках дифференциала, нужно отворачивать (заворачивать) обе гайки 17 на один и тот же угол.

При регулировке зацепления шестерен по положению пятна контакта следует обязательно сохранять необходимый боковой зазор между зубьями, величину которого измеряют индикатором со стороны большого диаметра ведомой конической шестерни. Значение бокового зазора должно быть в пределах 0,20…0,45 мм. При износе шестерен этот зазор увеличивается, поэтому требуется периодическая его проверка и регулировка.

Уменьшение бокового зазора между зубьями шестерен за счет смещения пятна контакта не допускается, так как это приводит к нарушению правильности зацепления шестерен и быстрому их износу.

Карданная передача. Обслуживание карданной передачи заключается в проверке крепления фланцев карданного вала (рис. 8), смазке игольчатых подшипников крестовин и скользящего шлицевого соединения. Карданные валы новой конструкции могут не иметь масленки. В этом случае смазка шлицев, которые имеют специальное покрытие, не требуется.

При износе или разрушении уплотнений игольчатых подшипников их следует своевременно заменять новыми, так как цапфы крестовин и сами подшипники быстро изнашиваются в результате загрязнения или вытекания смазки.

Крепление фланцев карданного вала следует проверять при каждом ТО-1. Для крепления фланцев карданного вала необходимо применять только оригинальные болты, которые имеют повышенный класс прочности.

Смазка шарниров и шлицевого соединения карданного вала должна производиться в соответствии с рекомендациями, приведенными в химмотологической карте.

Необходимо также следить за состоянием сальниковых уплотнений шлицевого соединения. При нарушении этого уплотнения износ шлицевого соединения возрастает, что может привести к повышенному биению карданного вала.

Схема карданной передачи

Рис. 8. Схема карданной передачи: 1, 7 — фланец-вилка; 2 — карданный вал; 3 — балансировочные пластины; 4 — установочные стрелки; 5 — контрольный клапан; 6 — скользящая вилка; 8 — масленка; 9 — манжета; 10 — стопорное кольцо; 11 — крестовина; 12 — игольчатый подшипник

Карданные валы необходимо собирать таким образом, чтобы оси шипов крестовин лежали в одной плоскости. Несоблюдение данного требования влечет за собой поломку карданного вала и деталей трансмиссии автотранспортного средства.

При разборке карданного шарнира следует помечать все его детали, чтобы при сборке установить их на те же места. Карданные валы необходимо собирать так, чтобы стрелки 4 (см. рис. 8), нанесенные на них, находились на одной линии. Осевой зазор вдоль шипов крестовины 11 обеспечивается подбором стопорных колец 10. После замены отдельных деталей карданный вал должен быть динамически сбалансирован приваркой балансировочных пластин 3.

4. ТО агрегатов трансмиссии

ТО‑1. Сцепление. Проверить:

  • действие оттяжной пружины и свободный ход педали сцепления;
  • герметичность системы гидропривода выключения сцепления;
  • уровень жидкости в гидроприводе механизма выключения сцепления.

У автомобилей, оборудованных пневмоусилителем сцепления, проверить крепление кронштейна и составных частей силового цилиндра усилителя.

Коробка передач. Проверить:

  • крепление коробки передач и ее внешних деталей;
  • в действии механизм переключения передач на неподвижном автомобиле.

Прочистить сапуны коробки передач и мостов.

Карданная передача. Проверить:

  • люфт в шарнирных и шлицевых соединениях карданной передачи;
  • состояние и крепление промежуточной опоры и опорных пластин игольчатых подшипников;
  • крепление фланцев карданных валов.

Задний мост. Проверить: герметичность соединений заднего (среднего) моста; крепление картера редуктора, фланцев полуосей и крышек колесных передач.

ТО‑2. Сцепление. Проверить:

  • крепление картера сцепления;
  • проверить действие оттяжной пружины, свободный и полный ход педали, работу сцепления и усилителя привода.

Прокачать гидропривод сцепления.

Коробка передач. Заменить масло в картерах агрегатов и бачках гидроприводов автомобиля в соответствии с химмотологической картой. Проверить:

  • действие механизма переключения передач (при необходимости закрепить коробку передач и ее узлы);
  • состояние, действие и крепление привода механизма переключения передач.

Карданная передача. Проверить:

  • люфт в шарнирах и шлицевых соединениях карданной передачи;
  • состояние и крепление промежуточной опоры и опорных пластин игольчатых подшипников;
  • крепление фланцев карданных валов.

Задний мост. Проверить крепление гайки фланца ведущей шестерни главной передачи (при снятом карданном вале); закрепить фланцы полуосей.

5. Особенности диагностирования и ТО автоматических коробок передач

5.1. Общее диагностирование

Общее состояние АКП определяют по ее внешнему виду, по уровню и состоянию рабочей жидкости (масла). Если система управления АКП электронная, тогда с помощью либо бортовой системы диагностики, либо специального сканера считываются коды неисправностей, которые были записаны в память блока управления в период эксплуатации автомобиля. После всех процедур диагностирования выводится отчет о найденных ошибках. На его основании принимается решение о дальнейшем ремонте либо замене неисправных частей автомобиля.

Следующим шагом диагностирования является проверка давлений в системе управления АКП. После этого проверяют исправность датчиков, проводки, переключателей и разъемов.

В случае необходимости может быть проведена тестовая проверка при движении автомобиля.

Проверка давления в гидросистеме трансмиссии. При работе в разных диапазонах в АКП поддерживается разное давление рабочей жидкости. Это необходимо для нормального функционирования фрикционных элементов управления, нагрузки на которые могут существенно различаться при разных режимах работы.

Перед проверкой давления необходимо прогреть рабочую жидкость до рабочей температуры и проверить ее уровень в АКП.

Автомобиль вывешивают, отвертывают пробку для контроля давления и в отверстие вместо пробки вворачивают трубопровод контрольного манометра. Рычаг привода стояночного тормоза ставят в крайнее верхнее положение. Запускают двигатель, выжимают педаль тормоза и проверяют давление рабочей жидкости при различных положениях селектора (давление не должно превышать значений, указанных в технической характеристике на данный автомобиль). Если давление не соответствует требуемому, необходимо провести диагностирование отдельных составляющих АКП.

Проверка электротехнических деталей АКП. Электромагнитные клапаны взаимодействуют с системой управления движением и включаются и выключаются по сигналам электронного блока управления, осуществляя переключение соответствующих повышенных передач. Такие клапаны устанавливают на АКП с электронным управлением.

Сначала электромагнитные клапаны проверяют на сопротивление между контактом и корпусом. К контактам соленоидов клапанов подводят напряжение аккумуляторной батареи, при этом должен быть слышен звук срабатывания соленоида. Затем проверяют механическую часть клапана, так как при наличии в ней посторонних частиц даже при срабатывании клапана управление потоком рабочей жидкости АКП осуществляться не будет; в клапан подают сжатый воздух и определяют полноту его открытия. После этого проверяют электрическую часть клапана путем подачи напряжения на его электромагнит, при этом клапан не должен пропускать воздух. Если работа электромагнитного клапана не соответствует норме, его заменяют.

Датчик температуры фиксирует температуру рабочей жидкости в АКП: при температуре масла примерно 150 °С на сигнализатор (лампочку) поступает сигнал от датчика.

Для проверки датчика температуры необходимо опустить его в емкость, залитую рабочей жидкостью для АКП, и определить электропроводность датчика при температуре 145…155 °С. Если при указанной температуре датчик не срабатывает, его необходимо заменить.

5.2. Смазочные работы

Проверка уровня рабочей жидкости. В АКП заливается рабочая жидкость марки ATF Dexron типа ATF D II E: GM Dexron II E-25300. Все рабочие жидкости для автоматических коробок Dexron можно смешивать друг с другом, однако никаких других добавок применять нельзя. Чтобы отличать рабочую жидкость ATF от других, ее иногда подкрашивают красным красителем.

Проверку уровня рабочей жидкости в АКП необходимо проводить один раз в год или через каждые 10 тыс. км пробега. Перед проверкой масло должно быть прогрето до рабочей температуры (примерно 60 °С). Как правило, рабочая температура достигается через 10…20 км пробега при температуре окружающего воздуха около 20 °С. Если нет возможности прогреть коробку передач пробегом, необходимо выполнить следующие операции: устанавливают автомобиль на ровной площадке, запускают двигатель и дают ему поработать в режиме холостого хода; устанавливают селектор в положение «Р» и, нажав на педаль тормоза, перемещают селектор через все положения, задерживаясь в каждом в течение 4…5 с, затем возвращают селектор в положение «Р». Уровень рабочей жидкости проверяют через 2 мин.

Температура окружающей среды при проверках уровня рабочей жидкости должна быть не ниже 20 °С, иначе результаты проверки могут быть недостоверными. Вытянув мерный стержень (щуп), проверяют уровень рабочей жидкости. Он должен находиться между метками «MIN» и «MAX». Если уровень ниже требуемого, следует долить соответствующее количество рабочей жидкости. У некоторых АКП на щупе могут быть указаны метки «MIN», «MAX» и температура, при которой проверяют уровень рабочей жидкости, например, 20 °С на одной стороне щупа и 90 °С на другой. Иногда на щупе есть еще и нижняя метка, соответствующая уровню холодной рабочей жидкости. Эта метка предназначена для приблизительного определения количества залитой рабочей жидкости в случае ее замены. Окончательно уровень рабочей жидкости все равно следует проверять после ее прогрева.

Нельзя допускать повышения уровня рабочей жидкости, так как это может привести к ее аэрации и вспениванию в результате завихрения жидкости шестернями. Кроме того, из-за повышения давления рабочая жидкость будет вытекать через вентиляционное отверстие насоса. Если произошел перелив рабочей жидкости, ее необходимо слить или удалить с помощью шприца.

При проверке уровня рабочей жидкости по следам, оставшимся на щупе, следует определить ее качество; жидкость должна быть без посторонних примесей и характерного горелого запаха. Коричневый оттенок и характерный запах рабочей жидкости свидетельствуют о сложных условиях эксплуатации: жидкость долгое время использовалась при высоких температурах и подгорала, что привело к появлению характерного запаха. Коричневый оттенок без запаха может появиться при долгом использовании жидкости без ее замены.

Черный оттенок рабочей жидкости свидетельствует о подгорании дисков муфты, износе втулок и шестерен. Он особенно сильно проявляется, когда алюминиевый порошок изнашиваемых втулок попадает в жидкость, которая чернеет.

Молочный оттенок рабочей жидкости указывает на попадание в коробку передач охлаждающей жидкости; охлаждающая жидкость может попасть в АКП из-за повреждений системы охлаждения коробки передач, поэтому необходимо проверить систему охлаждения, устранить неисправности и заменить рабочую жидкость.

Замена рабочей жидкости. Замена рабочей жидкости в АКП, как и в механических коробках передач, производится, как правило, через 60…150 тыс. км пробега с одновременной заменой масляного сетчатого фильтра в масляной ванне.

Для замены рабочей жидкости автомобиль устанавливают на подъемник или осмотровую канаву. Под поддон картера помещают большую емкость, поскольку большинство АКП не имеет традиционной сливной пробки и слив рабочей жидкости происходит при снятии поддона.

Снятый поддон картера осматривают на наличие на нем металлических частиц и волокон. Незначительное количество инородных материалов на поверхности поддона картера не связано с неисправностями АКП, за исключением случаев проскальзывания или запаздывания в переключении передач. Значительное количество загрязнений является следствием усиленного изнашивания деталей АКП.

При замене рабочей жидкости в АКП заменяют и фильтр. Перед установкой поддон картера и магнит, вблизи которого собираются частички металла, необходимо очистить растворителем.

Заполняют АКП рабочей жидкостью через воронку и удлинительный шланг в отверстие щупа. Количество рабочей жидкости, заливаемой в АКП, зависит от вида проводимых ремонтных работ и конкретного автомобиля. После заливки первоначального количества рабочей жидкости, нажав на педаль тормоза, запускают двигатель и, установив селектор в положение «Р», как и при операциях по проверке уровня рабочей жидкости, перемещают селектор по всем положениям и возвращают его в положение «Р». Проверяют уровень рабочей жидкости и при необходимости (по показаниям маслоизмерительного щупа) доливают до требуемого количества. Уровень рабочей жидкости проверяют при работающем двигателе в режиме холостого хода, в положении селектора «Р» и включенном стояночном тормозе.

Методы локализации утечек рабочей жидкости из АКП. При понижении уровня рабочей жидкости в АКП необходимо локализовать место утечки. Существует несколько методов локализации. Перед использованием любого метода необходимо тщательно очистить и вытереть насухо место предполагаемой утечки.

При использовании общего метода локализации утечки следует прогреть рабочую жидкость АКП до нормальной рабочей температуры путем пробега или другим способом, установить автомобиль на лист чистого картона (бумаги), заглушить двигатель и осмотреть подложенный лист на наличие масляных пятен.

При локализации утечки с помощью пудры предполагаемое место утечки покрывают пудрой из аэрозольной упаковки, известью или тальком. Прогрев рабочую жидкость до рабочей температуры, следует заглушить двигатель, осмотреть АКП и по месту появления рабочей жидкости определить место утечки.

При локализации с помощью специального красителя в рабочую жидкость через заливное отверстие в картере трансмиссии заливают специальный краситель в количестве, рекомендуемом его изготовителем. По месту появления красителя определяют место утечки.

После обнаружения мест утечки рабочей жидкости необходимо установить и устранить причины утечки. Возможные причины утечки:

  • слабая затяжка резьбовых соединений;
  • коррозионные повреждения и загрязнения резьбы отверстий в картере трансмиссии или крепежных соединений;
  • смещение, повреждение или износ прокладок и уплотнений;
  • повреждение или коробление уплотняемых отверстий и плоскостей;
  • наличие зазубрин или других повреждений на валике переключателя диапазонов;
  • увеличенный люфт и износ подшипников, приводящий к быстрому изнашиванию уплотнений втулок;
  • дефекты литья картера и крышек;
  • засорение вентиляционного отверстия (сапуна);
  • наличие воды или антифриза в рабочей жидкости трансмиссии.

5.3. ТО автоматических коробок передач

ТО‑1. Проверить:

  • крепление АКП к АТС, крепление масляного поддона и состояние масляных трубопроводов;
  • крепление наконечников электрических проводов;
  • правильность регулировки механизма управления периферийными золотниками.

ТО‑2. Проверить:

  • крепление крышек подшипников и картера гидротрансформатора к картеру коробки передач;
  • правильность регулировки режимов автоматического переключения передач;
  • давление рабочей жидкости в системе;
  • исправность датчика температуры рабочей жидкости;
  • состояние и крепление датчика спидометра.

https://ustroistvo-avtomobilya.ru/podveska/tehnicheskoe-obsluzhivanie-hodovoj-chasti-avtomobilya/
https://extxe.com/17532/diagnostirovanie-i-to-transmissii-avtomobilja/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: