Гидромеханическая трансмиссия автомобиля, назначение и устройство

Гидромеханическая трансмиссия

Гидротрансформатор

Трансмиссия

Назначение и устройство гидромеханической трансмиссии легкового автомобиля

Неотъемлемыми элементами конструкции классического устройства автомобиля служат сцепление с КПП. Но меняющийся образ жизни диктует создание оптимального комфорта для водителей. Это ведет к изменению стандартных узлов автомашины. Их все чаще заменяет комбинированная гидромеханическая трансмиссия, в состав которой входит как механическая, так и гидравлическая трансмиссии. В устройствах этого типа передаточное число, крутящий момент меняются постепенно и плавно.

Трансмиссия

Трансмиссия

Роль трансмиссии в машине

Для транспортного средства трансмиссией является все, что создает подачу крутящего момента от двигателя к колесам, например, КПП со сцеплением, как это в классических автомобилях. Сегодня в машинах их сменяют на АККП, когда управление облегчается, сцепление не предусмотрено, а переключения производятся автоматически.

Выполнение этих процессов обеспечивает гидромеханическая коробка передач. Для понимания процесса надо знать о двух главных моментах, возникающих при управлении автомобилем:

  • При переключении скоростей трансмиссия отключается от двигателя;
  • После смены дорожных условий выполняется изменение величины крутящего момента.

Это происходит после того, как выжато сцепление и переключена скорость коробкой передач (в обычных машинах). В транспортных средствах с АКПП эти процессы в большинстве случаев производит гидромеханическая коробка передач.

Механизм гидромеханической коробки

В устройство АКПП, применяемом в легковых автомобилях, входят:

  1. Гидротрансформатор;
  2. Управляющие составляющие;
  3. Механическая коробка скоростей.

Гидротрансформатор

Гидротрансформатор

Гидротрансформатор

В современный автомат входит гидротрансформатор, выполняющий в автомобиле с КПП (подает вращающий момент) функции сцепления. Благодаря гидротрансформатору транспортное средство плавно трогается. Снижение динамических нагрузок в трансмиссии приводит к повышению долговечности двигателя, а также остальных механизмов трансмиссии. Уменьшение количества переключений передач уменьшает утомляемость водителя.

Применение гидротрансформатора значительно увеличивает проходимость автомобиля по песку и снегу. Он создает устойчивую силу тяги с очень маленькой скоростью вращения на ведущих колесах, чем увеличивается их сцепление с поверхностью дорожного покрытия. Получается, что использование автоматических трансмиссий рекомендуется на внедорожниках. Гидротрансформатор имеет достаточно несложное устройство и объединяет три колеса:

  • Двигатель с гидротрансформатором связывает насосное;
  • Обеспечивает связь с первичным валом турбинное;
  • Усиливает крутящий момент реакторное.

Турбины на 3/4 помещены в масло и защищены специальным корпусом. Рабочий процесс гидромеханического привода основывается на том, что вращающий момент направляется от двигателя к насосному колесу, к турбинному колесу подается поток масла. Оно раскручивает колесо, и усилие предается на вал коробки скоростей. Весь процесс циркуляции масла проходит по особой траектории: с внешней стороны насосного кольца направляется на турбинное, а далее назад через центр механизма идет к насосному.

Турбина

Турбина

Гидротрансформатор автоматически меняет крутящий момент по мере нагрузки, далее он передается к механической коробке, и передачи переключаются фрикционными устройствами. Гидравлический привод определяет достаточное передаточное число, изменяя напор жидкости для ее циркулирования между напорным диском и турбинным. Свою работу гидротрансформатор выполняет непосредственно с планетарной коробкой.

Планетарная коробка

В гидромеханической АКПП чаще применяется планетарный механизм. При его простейшем устройстве крутящий момент подается к солнечной шестерне. С нею постоянно сцеплены свободно вращающиеся шестерни-сателлиты. На них предусмотрено водило, связанное с валом.

Если коронная шестерня находится в заторможенном положении, то крутящий момент через водило направляется на ведомый вал. Если шестерня расторможена, тогда сателлиты подают на нее крутящий момент. Ведомый вал при этом неподвижен.

Достоинства и недостатки автоматической коробки

  1. Отсутствие переключения передач вручную;
  2. Осуществление равномерной подачи мощности.

Автомобили автоматическим переключением скоростей отличаются особой плавностью хода. Когда водителю нет необходимости переключаться вручную, то облегчается процесс вождения транспортного средства.
Недостатками считается более сложная конструкция трансмиссий и их большая масса. К недостаткам относится более низкий КПД, снижающий топливную экономичность автомашины.
Это простейший вариант гидромеханической трансмиссии, а сегодня на легковые автомобили устанавливаются более совершенные модели.

Гидравлическая передача

Гидравли́ческий при́вод (гидропри́вод, гидравлическая передача) — совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством гидравлической энергии.

Гидропривод представляет собой своего рода «вставку» между приводным двигателем и нагрузкой (машиной или механизмом) и выполняет те же функции, что и механическая передача (редуктор, ремённая передача, кривошипно-шатунный механизм и т. д.).

В 1795 году английский изобретатель Брама изобрел гидравлический пресс.

Основная функция гидропривода, как и механической передачи, — преобразование механической характеристики приводного двигателя в соответствии с требованиями нагрузки (преобразование вида движения выходного звена двигателя, его параметров, а также регулирование, защита от перегрузок и др.). Другая функция гидропривода — это передача мощности от приводного двигателя к рабочим органам машины (например, в одноковшовом экскаваторе — передача мощности от двигателя внутреннего сгорания к ковшу или к гидродвигателям привода стрелы, к гидродвигателям поворота платформы и т. д.).

В общих чертах, передача мощности в гидроприводе происходит следующим образом:

  1. Приводной двигатель передаёт вращающий момент на вал насоса, который сообщает энергию рабочей жидкости. по гидролиниям через регулирующую аппаратуру поступает в гидродвигатель, где гидравлическая энергия преобразуется в механическую.
  2. После этого рабочая жидкость по гидролиниям возвращается либо в бак, либо непосредственно к насосу.

Гидроприводы могут быть двух типов: гидродинамические и объёмные.

  • В гидродинамических приводах используется в основном кинетическая энергия потока жидкости (и соответственно скорости движения жидкостей в гидродинамических приводах велики в сравнении со скоростями движения в объёмном гидроприводе).
  • В объёмных гидроприводах используется потенциальная энергия давления рабочей жидкости (в объёмных гидроприводах скорости движения жидкостей невелики — порядка 0,5—6 м/с ).

Объёмный гидропривод — это гидропривод, в котором используются объёмные гидромашины (насосы и гидродвигатели). Объёмной называется гидромашина, рабочий процесс которой основан на попеременном заполнении рабочей камеры жидкостью и вытеснении её из рабочей камеры. К объёмным машинам относят, например, поршневые насосы, аксиально-поршневые, радиально-поршневые, шестерённые гидромашины и др.

Одна из особенностей, отличающая объёмный гидропривод от гидродинамического, — большие давления в гидросистемах. Так, номинальные давления в гидросистемах экскаваторов могут достигать 32 МПа , а в некоторых случаях рабочее давление может быть более 300 МПа , в то время как гидродинамические машины работают обычно при давлениях, не превышающих 1,5—2 МПа .

Объёмный гидропривод намного более компактен и меньше по массе, чем гидродинамический, и поэтому он получил наибольшее распространение.

В зависимости от конструкции и типа входящих в состав гидропередачи элементов объёмные гидроприводы можно классифицировать по нескольким признакам.

По характеру движения выходного звена гидродвигателя

Гидропривод вращательного движения

когда в качестве гидродвигателя применяется гидромотор, у которого ведомое звено (вал или корпус) совершает неограниченное вращательное движение;

Гидропривод поступательного движения

у которого в качестве гидродвигателя применяется гидроцилиндр — двигатель с возвратно-поступательным движением ведомого звена (штока поршня, плунжера или корпуса);

Гидропривод поворотного движения

когда в качестве гидродвигателя применён поворотный гидродвигатель, у которого ведомое звено (вал или корпус) совершает возвратно-поворотное движение на угол, меньший 270°.

По возможности регулирования

Если скорость выходного звена (гидроцилиндра, гидромотора) регулируется изменением частоты вращения двигателя, приводящего в работу насос, то гидропривод считается нерегулируемым.

Регулируемый гидропривод

в котором в процессе его эксплуатации скорость выходного звена гидродвигателя можно изменять по требуемому закону. В свою очередь регулирование может быть:

Регулирование может быть: ручным или автоматическим.

В зависимости от задач регулирования гидропривод может быть:

Саморегулируемый гидропривод

автоматически изменяет подачу жидкости по фактической потребности гидросистемы в режиме реального времени (без запаздывания).

По схеме циркуляции рабочей жидкости

Гидропривод с замкнутой схемой циркуляции

в котором рабочая жидкость от гидродвигателя возвращается во всасывающую гидролинию насоса.

Гидропривод с замкнутой циркуляцией рабочей жидкости компактен, имеет небольшую массу и допускает большую частоту вращения ротора насоса без опасности возникновения кавитации, поскольку в такой системе во всасывающей линии давление всегда превышает атмосферное. К недостаткам следует отнести плохие условия для охлаждения рабочей жидкости, а также необходимость спускать из гидросистемы рабочую жидкость при замене или ремонте гидроаппаратуры;

Гидропривод с разомкнутой системой циркуляции

в котором рабочая жидкость постоянно сообщается с гидробаком или атмосферой.

Достоинства такой схемы — хорошие условия для охлаждения и очистки рабочей жидкости. Однако такие гидроприводы громоздки и имеют большую массу, а частота вращения ротора насоса ограничивается допускаемыми (из условий бескавитационной работы насоса) скоростями движения рабочей жидкости во всасывающем трубопроводе.

По источнику подачи рабочей жидкости

Насосный гидропривод

В насосном гидроприводе, получившем наибольшее распространение в технике, механическая энергия преобразуется насосом в гидравлическую, носитель энергии — рабочая жидкость, нагнетается через напорную магистраль к гидродвигателю, где энергия потока жидкости преобразуется в механическую. Рабочая жидкость, отдав свою энергию гидродвигателю, возвращается либо обратно к насосу (замкнутая схема гидропривода), либо в бак (разомкнутая или открытая схема гидропривода). В общем случае в состав насосного гидропривода входят гидропередача, гидроаппараты, кондиционеры рабочей жидкости, гидроёмкости и гидролинии.

Магистральный гидропривод

В магистральном гидроприводе рабочая жидкость нагнетается насосными станциями в напорную магистраль, к которой подключаются потребители гидравлической энергии. В отличие от насосного гидропривода, в котором, как правило, имеется один (реже 2—3) генератора гидравлической энергии (насоса), в магистральном гидроприводе таких генераторов может быть большое количество, и потребителей гидравлической энергии также может быть достаточно много.

Аккумуляторный гидропривод

В аккумуляторном гидроприводе жидкость подаётся в гидролинию от заранее заряженного гидроаккумулятора. Этот тип гидропривода используется в основном в машинах и механизмах с кратковременными режимами работы.

По типу приводящего двигателя

Гидроприводы бывают с электроприводом, приводом от ДВС, турбин и т. д.

Импульсный гидропривод

В гидроприводе этого вида выходное звено гидродвигателя совершает возвратно-поступательные или возвратно-вращательные движения с большой частотой (до 100 импульсов в секунду).

Обязательными элементами гидропривода являются насос и гидродвигатель. Насос является источником гидравлической энергии, а гидродвигатель — её потребителем, то есть преобразует гидравлическую энергию в механическую. Управление движением выходных звеньев гидродвигателей осуществляется либо с помощью регулирующей аппаратуры — дросселей, гидрораспределителей и др., либо путём изменения параметров самого гидродвигателя и/или насоса.

Также обязательными составными частями гидропривода являются гидролинии, по которым жидкость перемещается в гидросистеме.

Критически важной для гидропривода (в первую очередь объёмного) является очистка рабочей жидкости от содержащихся в ней (и постоянно образующихся в процессе работы) абразивных частиц. Поэтому системы гидропривода обязательно содержат фильтрующие устройства (например, масляные фильтры), хотя принципиально гидропривод некоторое время может работать и без них.

Поскольку рабочие параметры гидропривода существенно зависят от температуры рабочей жидкости, то в гидросистемах в некоторых случаях, но не всегда, устанавливают системы регулирования температуры (подогревающие и/или охладительные устройства).

Количество степеней свободы гидравлической системы может быть определено простым подсчётом количества независимо управляемых гидродвигателей.

Объёмный гидропривод применяется в горных и строительно-дорожных машинах. В настоящее время более 50 % общего парка мобильных строительно-дорожных машин (бульдозеров, экскаваторов, автогрейдеров и др.) является гидрофицированной. Это существенно отличается от ситуации 1930—1940-х годов, когда в этой области применялись в основном механические передачи.

В станкостроении гидропривод также широко применяется, однако в этой области он испытывает высокую конкуренцию со стороны других видов привода [1] .

Широкое распространение получил гидропривод в авиации. Насыщенность современных самолётов системами гидропривода такова, что общая длина трубопроводов современного пассажирского авиалайнера может достигать нескольких километров. В последнее время в авиации существует тенденция перехода на электронные системы управления (ЭДСУ) гидроприводами, заменяющие гидравлическую логику и цепи на электронные.

В автомобильной промышленности самое широкое применение нашли гидроусилители руля, существенно повышающие удобство управления автомобилем. Эти устройства являются разновидностью следящих гидроприводов. Гидроусилители применяют и во многих других областях техники (авиации, тракторостроении, промышленном оборудовании и др.).

В некоторых танках, например, в японском танке Тип 10, применяется гидростатическая трансмиссия, представляющая собой, по сути, систему объёмного гидропривода движителей. Такого же типа трансмиссия устанавливается и в некоторых современных бульдозерах.

В целом, границы области применения гидропривода определяются его преимуществами и недостатками.

К основным преимуществам гидропривода относятся:

  • возможность универсального преобразования механической характеристики приводного двигателя в соответствии с требованиями нагрузки;
  • простота управления и автоматизации;
  • простота предохранения приводного двигателя и исполнительных органов машин от перегрузок; например, если усилие на штоке гидроцилиндра становится слишком большим (такое возможно, в частности, когда шток, соединённый с рабочим органом, встречает препятствие на своём пути), то давление в гидросистеме достигает больших значений — тогда срабатывает предохранительный клапан в гидросистеме, и после этого жидкость идёт на слив в бак, и давление уменьшается;
  • надёжность эксплуатации;
  • широкий диапазон бесступенчатого регулирования скорости выходного звена; например, диапазон регулирования частоты вращения гидромотора может составлять от 2500 об/мин до 30—40 об/мин , а в некоторых случаях, у гидромоторов специального исполнения, доходит до 1—4 об/мин , что для электромоторов трудно реализуемо;
  • большая передаваемая мощность на единицу массы привода; в частности, масса гидравлических машин примерно в 10-20 раз меньше массы электрических машин такой же мощности;
  • самосмазываемость трущихся поверхностей при применении минеральных и синтетических масел в качестве рабочих жидкостей; нужно отметить, что при техническом обслуживании, например, мобильных строительно-дорожных машин на смазку уходит до 50 % всего времени обслуживания машины, поэтому самосмазываемость гидропривода является серьёзным преимуществом;
  • возможность получения больших сил и мощностей при малых размерах и весе передаточного механизма;
  • простота осуществления различных видов движения — поступательного, вращательного, поворотного;
  • возможность частых и быстрых переключений при возвратно-поступательных и вращательных прямых и реверсивных движениях;
  • возможность равномерного распределения усилий при одновременной передаче на несколько приводов;
  • упрощённость компоновки основных узлов гидропривода внутри машин и агрегатов, в сравнении с другими видами приводов.

К недостаткам гидропривода относятся:

  • утечки рабочей жидкости через уплотнения и зазоры, особенно при высоких значениях давления в гидросистеме, что требует высокой точности изготовления деталей гидрооборудования;
  • нагрев рабочей жидкости при работе, что приводит к уменьшению вязкости рабочей жидкости и увеличению утечек, поэтому в ряде случаев необходимо применение специальных охладительных устройств и средств тепловой защиты;
  • более низкий КПД чем у сопоставимых механических передач;
  • необходимость обеспечения в процессе эксплуатации чистоты рабочей жидкости, поскольку наличие большого количества абразивных частиц в рабочей жидкости приводит к быстрому износу деталей гидрооборудования, увеличению зазоров и утечек через них, и, как следствие, к снижению объёмного КПД;
  • необходимость защиты гидросистемы от проникновения в неё воздуха, наличие которого приводит к нестабильной работе гидропривода, большим гидравлическим потерям и нагреву рабочей жидкости;
  • пожароопасность в случае применения горючих рабочих жидкостей, что налагает ограничения, например, на применение гидропривода в горячих цехах;
  • зависимость вязкости рабочей жидкости, а значит и рабочих параметров гидропривода, от температуры окружающей среды, или дороговизна масел на основе ПАО;
  • в сравнении с пневмо- и электроприводом — невозможность эффективной передачи гидравлической энергии на большие расстояния вследствие больших потерь напора в гидролиниях на единицу длины.

Гидравлические технические устройства известны с глубокой древности. Например, насосы для тушения пожаров существовали ещё во времена Древней Греции [2] .

Однако, как целостная система, включающая в себя и насос, и гидродвигатель, и устройства распределения жидкости, гидропривод стал развиваться в последние 200—250 лет.

Одним из первых устройств, ставших прообразом гидропривода, является гидравлический пресс. В 1795 году патент на такое устройство получил Джозеф Брама (англ. Joseph Bramah ) [3] , которому помогал Генри Модсли, и в 1797 году первый в истории гидравлический пресс был построен [4] .

В конце XVIII века появились первые грузоподъёмные устройства с гидравлическим приводом, в которых рабочей жидкостью служила вода. Первый подъёмный кран с гидравлическим приводом был введён в эксплуатацию в Англии в 1846—1847 годах [5] , и со второй половины XIX века гидропривод находит широкое применение в грузо-подъёмных машинах.

Создание первых гидродинамических передач связано с развитием в конце XIX века судостроения. В то время в морском флоте стали применять быстроходные паровые машины. Однако, из-за кавитации, повысить число оборотов гребных винтов не удавалось. Это потребовало применения дополнительных механизмов. Поскольку технологии в то время не позволяли изготавливать высокооборотистые шестерённые передачи, то потребовалось создание принципиально новых передач. Первым таким устройством с относительно высоким КПД явился изобретённый немецким профессором Г. Фётингером гидравлический трансформатор (патент 1902 года) [6] , представлявший собой объединённые в одном корпусе насос, турбину и неподвижный реактор. Однако первая применённая на практике конструкция гидродинамической передачи была создана в 1908 году, и имела КПД около 83 %. Позднее гидродинамические передачи нашли применение в автомобилях. Они повышали плавность трогания с места. В 1930 году Гарольд Синклер (англ. Harold Sinclair ), работая в компании Даймлер, разработал для автобусов трансмиссию, включающую гидромуфту и планетарную передачу [7] . В 1930-х годах производились первые дизельные локомотивы, использовавшие гидромуфты [8] .

В СССР первая гидравлическая муфта была создана в 1929 году.

В 1882 году компания Армстронг Уитворс представила экскаватор, в котором впервые ковш имел гидравлический привод [9] . Один из первых гидрофицированных экскаваторов был произведён французской компанией Poclain в 1951 году. Однако эта машина не могла поворачивать башню на 360 градусов. Первый полноповоротный экскаватор с гидроприводом был представлен этой же фирмой в 1960-м году. В начале 1970-х годов гидрофицированные экскаваторы, обладавшие большей производительностью и простотой управления, в основном, вытеснили с рынка своих предшественников — экскаваторы на канатной тяге [10] .

Первый патент, связанный с гидравлическим усилением, был получен Фредериком Ланчестером в Великобритании в 1902 году. Его изобретение представляло собой «усилительный механизм, приводимый посредством гидравлической энергии» [11] . В 1926 году инженер подразделения грузовиков компании Пирс Эрроу (англ. Pierce Arrow ) продемонстрировал в компании «Дженерал моторс» гидроусилитель руля с хорошими характеристиками, однако автопроизводитель посчитал, что эти устройства будут слишком дорогими, чтобы выпускать их на рынок [12] [13] . Первый предназначенный для коммерческого использования гидроусилитель руля был создан компанией Крайслер в 1951 году, и сейчас большинство новых автомобилей укомплектовывается подобными устройствами.

Фирма Хонда после представления гидростатической трансмиссии в 2001 году для своей модели мотовездехода FourTrax Rubicon, анонсировала в 2005-м году мотоцикл Honda DN-01 с гидростатической трансмиссией, включающей насос и гидромотор. Модель начала продаваться на рынке в 2008 году. Это была первая модель транспортного средства для автодорог, в котором использовалась гидростатическая трансмиссия [14] .

Перспективы развития гидропривода во многом связаны с развитием электроники. Так, совершенствование электронных систем позволяет упростить управление движением выходных звеньев гидропривода. В частности, в последние 10—15 лет стали появляться бульдозеры, управление которыми устроено по принципу джойстика.

С развитием электроники и вычислительных средств связан прогресс в области диагностирования гидропривода. Процесс диагностирования некоторых современных машин простыми словами может быть описан следующим образом. Специалист подключает переносной компьютер к специальному разъёму на машине. Через этот разъём в компьютер поступает информация о значениях диагностических параметров от множества датчиков, встроенных в гидросистему. Программа или специалист анализирует полученные данные и выдаёт заключение о техническом состоянии машины, наличии или отсутствии неисправностей и их локализации. По такой схеме осуществляется диагностирование, например, некоторых современных ковшовых погрузчиков. Развитие вычислительных средств позволит усовершенствовать процесс диагностирования гидропривода и машин в целом.

Важную роль в развитии гидропривода может сыграть создание и внедрение новых конструкционных материалов. В частности, развитие нанотехнологий позволит повысить прочность материалов, что позволит уменьшить массу гидрооборудования и его геометрические размеры, повысить его надёжность. С другой стороны, создание прочных и одновременно эластичных материалов позволит, например, уменьшить недостатки многих гидравлических машин, в частности, увеличить развиваемое диафрагменными насосами давление.

В последние годы наблюдается существенный прогресс в производстве уплотнительных устройств. Новые материалы обеспечивают полную герметичность при давлениях до 80 МПа , низкие коэффициенты трения и высокую надёжность [1] .

Гидравлическое оборудование КДМ

Гидрооборудование служит для привода в действие рабочих органов машин комбинированных уборочных.

Отбор мощности для привода гидронасосов осуществляется от коробки передач через две коробки отбора мощности (КОМ).

Механическая энергия приводимого вала гидронасосов преобразуется в энергию потока рабочей жидкости и используется для приведения в действие гидроцилиндра подъема и опускания щетки дорожной, гидроцилиндра подъема и опускания отвала городского, гидромоторов разбрасывателя и щетки межбазовой, гидровращателя транспортера и гидроцилиндра центрального клапана цистерны (шарового крана).

Коробка отбора мощности МП73-4202010 одноступенчатая, состоит из корпуса, зубчатой пары и пневмокамеры для включения ведомой шестерни. КОМ имеет два выхода, к одному закреплен насос НШ32УЛ, с противоположной стороны установлена муфта для карданного вала.

Коробка отбора мощности МП39-4202010 двухступенчатая, левая с выходом на кардан и далее к гидронасосу НШ-50.

гидробак

Состав гидросистемы КДМ

Гидросистема состоит из двух независимых линий, питающихся от одного бака:

  • Одна линия включает в себя: бак — насос — регулятор расхода — манометр – односекционный гидрораспределитель – гидромотор разбрасывателя — бак.
  • Вторая линия: бак — насос — регулятор расхода — манометр – трехсекционный гидрораспределитель — гидровращатель, гидромотор щетки дорожной и водяного насоса — гидроцилиндры с гидрозамками — бак.

Технические данные, описание и указания по эксплуатации гидронасоса, гидромоторов, гидровращателя, редукторов, даны в паспортах.

Порядок работы гидравлики КДМ

Забор рабочей жидкости гидронасосами осуществляется по маслопроводу из бака. Основным условием для нормальной работы гидросистемы является герметичность ее соединений и чистота заливаемого масла.

Бак прямоугольного сечения крепится между водительской кабиной и пескоразбрасывающим бункером (цистерной). На баке смонтированы фильтра: однолинейный, воздушный, гидрораспределители, сливной коллектор.

Система фильтрации

Линейный фильтрующий элемент очищает гидравлическое масло перед подачей в гидронасос. Масло подводится к крышке и по фасонному отверстию поступает в отстойник проходит через штору фильтроэлемента. Фильтр имеет форму цилиндра с наружной перфорированной обечайкой и внутренней трубой, между которыми расположена штора из фильтровальной бумаги. Крупные частицы загрязнений осаждаются в отстойнике, мелкие — задерживаются в фильтрующей шторе.

Для предохранения фильтроэлемента от повреждения при засорении фильтрующего элемента или запуске системы в холодное время от возрастания сопротивления установлен предохранительный клапан, который отрегулирован так, что при возрастании давления в фильтрующем элементе до 0,25 МПа (2,5 кгс/см 2 ) начинает работу; при нагнетании напора до 0,3 МПа (3,0 кгс/см 2 ) направляет масло в гидравлический бак, мимо фильтра.

Доливка гидравлического масла

Заправку бака осуществляется воронкой, вывернув фильтр воздушный. Масло перед заливкой профильтровать через фильтрующий материал

В днище бака имеется пробка слива масла, на стенке бака имеется маслоуказатель для контроля уровня масла.

Гидрозамки

В контур маслопроводов гидроцилиндров отвала поворотного и щетки межбазовой установлены гидрозамки по одному на гидроцилиндр. Гидрозамок в контуре гидроцилиндра подъема и опускания отвала городского установлен на гидроцилиндре, в контуре подъема и опускания щетки дорожной на специальном кронштейне возле гидроцилиндра.

Гидрозамок односторонний пропускает рабочую жидкость только в одном направлении, предохраняет щетку межбазовую и передний отвал КДМ от самопроизвольного опускания.

гидрораспределитель

Гидрораспределитель

Трехсекционный гидрораспределитель состоит из клапанной секции, 3-х рабочих секций и управляющей секции. Клапанная секция с предохранительным клапаном, отрегулированным на давление 15 МПа, имеет два отверстия, одно для подвода масла из гидронасоса, другое для слива масла в сливной коллектор и далее в бак. Каждая рабочая секция имеет два вывода для подачи масла к исполнительным механизмам.

Согласно гидравлической схеме назначение выводов гидрораспределителя следующее:

клапанная секцияР – подвод масла от регулятора расхода
Т – слив масла от гидрораспределителя в бак
первая секцияА1 — вращение гидровращателя транспортера
Б1 — вращение щетки
вторая секцияА2 — подъем щетки
Б2 — опускание щетки
третья секцияА3 – подъем отвала (закрывание шарового крана)
Б3 – опускание скоростного отвала (открывание шарового крана)

Для управления гидрораспределителем на панели управления водителя имеются тумблеры с обозначением включаемого механизма.

гидромотор

Регулятор расхода гидравлической жидкости

Для предохранения гидросистемы от превышения давления и возможности регулирования скорости вращения гидромоторов и гидровращателя установлены два регулятора расхода с предохранительным клапаном. Регуляторы расхода установлены на левой стенке гидробака. Предохранительный клапан системы привода транспортера и щетки дорожной регулируется на давление 16 МПа, а гидросистемы привода разбрасывателя — на давление 10 МПа.

Предохранительный клапан регулируется кручением валика. При кручении валика в одну сторону давление нагнетается, в другую — падает. После монтажа давления валик фиксируется контргайкой.

Гидропоток масла и, соответственно, скорость вращения гидромоторов и гидровращателя контролируется уменьшением или увеличением проходного отверстия. При выкручивании маховичка поток масла возрастает, при закручивании — падает.

рпг-6300

Сливной коллектор

Сливной коллектор, представляющий собой трубу с приваренными штуцерами, закреплен на гидробаке. К сливному коллектору отводится масло от гидромоторов щетки межбазовой и разбрасывателя, от сливных секций регуляторов расхода и гидрораспределителя. Из сливного коллектора масло через фильтр поступает в бак.

Примечания:

На машине КДМ-43253-02 и КДМ-43253-02С (машина без поливомоечного оборудования) взамен коробок отбора мощности МП39-4202010 и МП73-4202010 устанавливается одна правая коробка МП21-4202010 с двумя насосами НШ-32УЛ и НШ-50.

На машине КДМ-43253-03 (машина без пескоразбрасывающего оборудования) на правой коробке отбора мощности не устанавливается насос НШ-32УЛ и гидрораспределитель ВЕ10.573.24Н из-за отсутствия пескоразбрасывателя.

https://autodont.ru/transmission/gidromexanicheskaya-transmissiya

https://wikicom.ru/wiki/%D0%93%D0%B8%D0%B4%D1%80%D0%B0%D0%B2%D0%BB%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D0%BF%D0%B5%D1%80%D0%B5%D0%B4%D0%B0%D1%87%D0%B0

https://xn--80aanb5akkkfe6c.xn--p1ai/gidravlicheskoe-oborudovanie-kdm/

Оставьте ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *

X